PGN_RF | R Documentation |
Construct the peak-gene network via random forest.
PGN_RF(
X,
Y,
gene_data,
neibor_peak,
dirpath = tempdir(),
count_device = 1,
rebuild_PGN_RF = TRUE,
save_file = TRUE,
seed = NULL,
python_env = "scPOEM_env"
)
X |
The scATAC-seq data, sparse matrix. |
Y |
The scRNA-seq data, sparse matrix. |
gene_data |
The information for genes, must have a col names "gene_name". |
neibor_peak |
The peak IDs within a certain range of each gene, must have cols c("gene_name", "start_use", "end_use"). The id numbers in "start_use" and "end_use" are start from 0. |
dirpath |
The folder path to read or write file. |
count_device |
The number of cpus used to train the Lasso model. |
rebuild_PGN_RF |
Logical. Whether to rebuild the peak-gene network via random forest from scratch. If FALSE, the function will attempt to read from |
save_file |
Logical, whether to save the output to a file. |
seed |
An integer specifying the random seed to ensure reproducible results. |
python_env |
Name or path of the Python environment to be used. |
The PGN_RF network.
library(scPOEM)
dirpath <- "./example_data"
# Download single mode example data
data(example_data_single)
# Construct PGN net via random forest (RF).
net_RF <- PGN_RF(example_data_single$X,
example_data_single$Y,
example_data_single$gene_data,
example_data_single$neibor_peak,
file.path(dirpath, "single"),
save_file=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.