View source: R/transform-numeric.R
| transform_yj | R Documentation |
The Yeo-Johnson transformation is a flexible transformation that is similar
to Box-Cox, transform_boxcox(), but does not require input values to be
greater than zero.
transform_yj(p)
yj_trans(p)
p |
Transformation exponent, |
The transformation takes one of four forms depending on the values of y and \lambda.
y \ge 0 and \lambda \neq 0 :
y^{(\lambda)} = \frac{(y + 1)^\lambda - 1}{\lambda}
y \ge 0 and \lambda = 0:
y^{(\lambda)} = \ln(y + 1)
y < 0 and \lambda \neq 2:
y^{(\lambda)} = -\frac{(-y + 1)^{(2 - \lambda)} - 1}{2 - \lambda}
y < 0 and \lambda = 2:
y^{(\lambda)} = -\ln(-y + 1)
Yeo, I., & Johnson, R. (2000). A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika, 87(4), 954-959. https://www.jstor.org/stable/2673623
plot(transform_yj(-1), xlim = c(-10, 10))
plot(transform_yj(0), xlim = c(-10, 10))
plot(transform_yj(1), xlim = c(-10, 10))
plot(transform_yj(2), xlim = c(-10, 10))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.