anova.sc_plm: ANOVA Table for Piecewise Linear Models

View source: R/anova.R

anova.sc_plmR Documentation

ANOVA Table for Piecewise Linear Models

Description

Model comparison for piecewise regression models

Usage

## S3 method for class 'sc_plm'
anova(object, ...)

## S3 method for class 'sc_hplm'
anova(object, ...)

## S3 method for class 'sc_mplm'
anova(object, ...)

Arguments

object

an object containing the results returned by a plm().

...

additional plm objects.

Examples

## For glm models with family = "gaussian"
mod1 <- plm(exampleAB$Johanna, level = FALSE, slope = FALSE)
mod2 <- plm(exampleAB$Johanna)
anova(mod1, mod2)
## For glm models with family = "poisson"
mod0 <- plm(example_A24, formula = injuries ~ 1, family = "poisson")
mod1 <- plm(example_A24, trend = FALSE, family = "poisson")
anova(mod0, mod1, mod2)
## For glm with family = "binomial"
mod0 <- plm(
  exampleAB_score$Christiano, 
  formula = values ~ 1, 
  family = "binomial", 
  var_trials = "trials"
)
mod1 <- plm(
  exampleAB_score$Christiano, 
  trend = FALSE, 
  family = "binomial", 
  var_trials = "trials"
)
anova(mod0, mod1)
## For multilevel models:
mod0 <- hplm(Leidig2018, trend = FALSE, slope = FALSE, level = FALSE)
mod1 <- hplm(Leidig2018, trend = FALSE)
mod2 <- hplm(Leidig2018)
anova(mod0, mod1, mod2)
## For mplm
mod0 <- mplm(
  Leidig2018$`1a1`, 
  update = . ~  1, dvar = c("academic_engagement", "disruptive_behavior")
)
mod1 <- mplm(
  Leidig2018$`1a1`, 
  trend = FALSE, 
  dvar = c("academic_engagement", "disruptive_behavior")
)
mod2 <- mplm(
  Leidig2018$`1a1`, 
  dvar = c("academic_engagement", "disruptive_behavior")
)

anova(mod0, mod1, mod2)

scan documentation built on April 3, 2025, 6:18 p.m.