Description Usage Arguments Details Value References Examples
This function computes the raw p-values for the post hoc based on Friedman's test.
1 | friedmanPost(data, control = NULL, ...)
|
data |
Data set (matrix or data.frame) to apply the test. The column names are taken as the groups and the values in the matrix are the samples. |
control |
Either the number or the name of the column for the control algorithm. If this parameter is not provided, the all vs all comparison is performed. |
... |
Not used. |
The test has been implemented according to the version in Demsar (2006), page 12.
A matrix with all the pairwise raw p-values (all vs. all or all vs. control).
J. Demsar (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, 7, 1-30.
1 2 3 | data(data_gh_2008)
friedmanPost(data.gh.2008)
friedmanPost(data.gh.2008, control=1)
|
C4.5 k-NN(k=1) NaiveBayes Kernel CN2
C4.5 NA 0.004848763 8.064959e-01 4.486991e-08 0.012763008
k-NN(k=1) 4.848763e-03 NA 1.011233e-02 7.963489e-03 0.743971478
NaiveBayes 8.064959e-01 0.010112334 NA 1.736118e-07 0.024744672
Kernel 4.486991e-08 0.007963489 1.736118e-07 NA 0.002880485
CN2 1.276301e-02 0.743971478 2.474467e-02 2.880485e-03 NA
C4.5 k-NN(k=1) NaiveBayes Kernel CN2
[1,] NA 0.004848763 0.8064959 4.486991e-08 0.01276301
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.