approxMleWn2D | R Documentation |
Approximate Maximum Likelihood Estimation (MLE) for the Wrapped Normal (WN) in 2D using the wrapped Ornstein–Uhlenbeck diffusion.
approxMleWn2D(data, delta, start, alpha = rep(NA, 3), mu = rep(NA, 2),
sigma = rep(NA, 2), rho = NA, lower = c(0.01, 0.01, -25, -pi, -pi,
0.01, 0.01, -0.99), upper = c(rep(25, 3), pi, pi, 25, 25, 0.99),
maxK = 2, ...)
data |
a matrix of dimension |
delta |
discretization step. |
start |
starting values, a matrix with |
alpha , mu , sigma , rho |
if their values are provided, the likelihood
function is optimized with respect to the rest of unspecified parameters.
The number of elements in |
lower , upper |
bound for box constraints as in method |
maxK |
maximum absolute winding number used if |
... |
further parameters passed to |
See Section 3.3 in García-Portugués et al. (2019) for details.
Output from mleOptimWrapper
.
García-Portugués, E., Sørensen, M., Mardia, K. V. and Hamelryck, T. (2019) Langevin diffusions on the torus: estimation and applications. Statistics and Computing, 29(2):1–22. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11222-017-9790-2")}
alpha <- c(2, 2, -0.5)
mu <- c(0, 0)
sigma <- c(1, 1)
rho <- 0.2
samp <- rTrajWn2D(x0 = c(0, 0), alpha = alpha, mu = mu, sigma = sigma,
rho = rho, N = 1000, delta = 0.1)
approxMleWn2D(data = samp, delta = 0.1, start = c(alpha, mu, sigma, rho))
approxMleWn2D(data = samp, delta = 0.1, alpha = alpha,
start = c(mu, sigma), lower = c(-pi, -pi, 0.01, 0.01),
upper = c(pi, pi, 25, 25))
mleMou(data = samp, delta = 0.1, start = c(alpha, mu, sigma),
optMethod = "Nelder-Mead")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.