approxMleWnPairs | R Documentation |
Approximate Maximum Likelihood Estimation (MLE) for the Wrapped Normal (WN) diffusion, using the wrapped Ornstein–Uhlenbeck diffusion and assuming initial stationarity.
approxMleWnPairs(data, delta, start = c(0, 0, 1, 1, 0, 1, 1),
alpha = rep(NA, 3), mu = rep(NA, 2), sigma = rep(NA, 2), rho = NA,
lower = c(-pi, -pi, 0.01, 0.01, -25, 0.01, 0.01, -0.99), upper = c(pi,
pi, 25, 25, 25, 25, 25, 0.99), maxK = 2, expTrc = 30, ...)
data |
a matrix of dimension |
delta |
discretization step. |
start |
starting values, a matrix with |
alpha |
vector of length |
mu |
a vector of length |
sigma |
vector of length |
rho |
correlation coefficient of |
lower , upper |
bound for box constraints as in method |
maxK |
maximum absolute value of the windings considered in the computation of the WN. |
expTrc |
truncation for exponential: |
... |
further parameters passed to |
Output from mleOptimWrapper
.
mu <- c(0, 0)
alpha <- c(1, 2, 0.5)
sigma <- c(1, 1)
rho <- 0.5
set.seed(4567345)
begin <- rStatWn2D(n = 200, mu = mu, alpha = alpha, sigma = sigma)
end <- t(apply(begin, 1, function(x) rTrajWn2D(x0 = x, alpha = alpha,
mu = mu, sigma = sigma,
rho = rho, N = 1,
delta = 0.1)[2, ]))
data <- cbind(begin, end)
approxMleWnPairs(data = data, delta = 0.1,
start = c(2, pi/2, 2, 0.5, 0, 2, 1, 0.5))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.