View source: R/05_sdl_methods.R
summary.sdlrm | R Documentation |
summary
method for class "sdlrm"
.
## S3 method for class 'sdlrm'
summary(object, ...)
## S3 method for class 'summary.sdlrm'
print(x, digits = getOption("digits"), ...)
object |
an object of class |
... |
further arguments passed to or from other methods. |
x |
an object of class |
digits |
a non-null value for digits specifies the minimum number of significant digits to be printed in values. |
The function summary.sdlrm
returns an object of class "summary.sdlrm"
,
which consists of a list with the following components:
the original function call, given in object
.
summary statistics for the mean regression structure.
summary statistics for the dispersion regression structure.
the specified mode for the model.
the link function used for the dispersion parameter model.
the randomized quantile residuals.
the pseudo-R2 for integer-valued regression models, as introduced by Medeiros and Bourguignon (2025).
log-likelihood value of the fitted model.
Akaike and Bayesian information criteria.
Francisco F. de Queiroz <felipeq@ime.usp.br>
Rodrigo M. R. de Medeiros <rodrigo.matheus@ufrn.br>
Medeiros, R. M. R., and Bourguignon, M. (2025). Modified skew discrete Laplace regression models for integer valued data with applications to paired samples. Manuscript submitted for publication.
# Data set: pss (for description run ?pss)
barplot(table(pss$difference), xlab = "PSS index difference", ylab = "Frequency")
boxplot(pss$difference ~ pss$group, xlab = "Group", ylab = "PSS index difference")
# Fit with a model only for the mean (mode = 1)
fit0 <- sdlrm(difference ~ group, data = pss, xi = 1)
summary(fit0)
# Fit a double model (mean and dispersion)
fit <- sdlrm(difference ~ group | group, data = pss, xi = 1)
summary(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.