Nothing
## test_that("ggeffects + sdmTMB", {
## skip_on_cran()
## skip_if_not_installed("INLA")
## skip_if_not_installed("ggeffects")
## skip_if_not_installed("ggplot2")
##
## pcod_2011$fyear <- as.factor(pcod_2011$year)
## fit <- sdmTMB(present ~ depth_scaled + I(depth_scaled^2) + fyear,
## data = pcod_2011,
## mesh = pcod_mesh_2011,
## family = binomial()
## )
## g <- ggeffects::ggeffect(fit, "depth_scaled [-2.5:2.5, by=.1]")
## expect_s3_class(g, "data.frame")
## plot(g)
##
## e <- effects::effect("depth_scaled", fit)
## e
## expect_true(inherits(e, "eff"))
##
## fit2 <- sdmTMB(present ~ depth_scaled + I(depth_scaled^2) + (1 | fyear),
## data = pcod_2011,
## mesh = pcod_mesh_2011,
## family = binomial()
## )
## effects::effect("depth_scaled", fit2)
## g <- ggeffects::ggeffect(fit2, "depth_scaled [-2.5:2.5, by=.1]")
## plot(g)
## expect_s3_class(g, "data.frame")
##
## fit3 <- sdmTMB(present ~ s(year, k = 3) + depth_scaled + I(depth_scaled^2),
## data = pcod_2011,
## mesh = pcod_mesh_2011,
## family = binomial()
## )
## effects::effect("depth_scaled", fit3)
## g <- ggeffects::ggeffect(fit3, "depth_scaled [-2.5:2.5, by=.1]")
## plot(g)
## expect_s3_class(g, "data.frame")
##
## fit4 <- sdmTMB(present ~ s(depth_scaled, k = 4),
## data = pcod_2011,
## mesh = pcod_mesh_2011,
## family = binomial()
## )
## expect_error({
## effects::effect("depth_scaled", fit4)
## }, regexp = "missing")
## })
### test_that("ggpredict + sdmTMB", {
### skip_on_cran()
### skip_if_not_installed("INLA")
### skip_if_not_installed("ggeffects")
### skip_if_not_installed("ggplot2")
### skip_if_not_installed("sdmTMB")
###
### d <- pcod_2011
### d$fyear <- as.factor(d$year)
###
### # basic quadratic
### fit <- sdmTMB(present ~ depth_scaled + I(depth_scaled^2) + fyear,
### data = d,
### spatial = "off",
### family = binomial()
### )
### g <- ggeffects::ggpredict(fit, "depth_scaled [all]")
### expect_s3_class(g, "data.frame")
### plot(g)
###
### # matches glmmTMB?
### fit_glmmTMB <- glmmTMB::glmmTMB(
### present ~ depth_scaled + I(depth_scaled^2) + fyear,
### data = d,
### family = binomial()
### )
### g_glmmTMB <- ggeffects::ggpredict(fit, "depth_scaled [all]")
### expect_equal(g, g_glmmTMB, tolerance = 1e-3)
###
### # with random intercept
### fit2 <- sdmTMB(
### present ~ depth_scaled + I(depth_scaled^2) + (1 | fyear),
### data = d,
### spatial = "off",
### family = binomial()
### )
### g <- ggeffects::ggpredict(fit2, "depth_scaled [all]")
### plot(g)
### expect_s3_class(g, "data.frame")
###
### # matches glmmTMB?
### fit_glmmTMB2 <- glmmTMB::glmmTMB(
### present ~ depth_scaled + I(depth_scaled^2) + (1 | fyear),
### data = d,
### family = binomial()
### )
### g_glmmTMB <- ggeffects::ggpredict(fit_glmmTMB2, "depth_scaled [all]")
###
### plot(g)
### plot(g_glmmTMB)
### expect_equal(g$predicted, g_glmmTMB$predicted, tolerance = 1e-3)
### expect_equal(g$std.error, g_glmmTMB$std.error, tolerance = 1e-3)
###
### expect_error(ggeffects::ggpredict(fit2, "depth_scaled [all]", type = "re"), regexp = "supported")
###
### # with other smoother terms:
### fit3 <- sdmTMB(
### present ~ s(year, k = 3) + depth_scaled + I(depth_scaled^2),
### data = d,
### spatial = "off",
### family = binomial()
### )
### g <- ggeffects::ggpredict(fit3, "depth_scaled [all]")
### expect_s3_class(g, "data.frame")
###
### # on smoother terms themselves:
### fit4 <- sdmTMB(
### present ~ s(depth_scaled, k = 5),
### data = d,
### spatial = "off",
### family = binomial()
### )
### g <- ggeffects::ggpredict(fit4, "depth_scaled [all]")
### plot(g)
### expect_s3_class(g, "data.frame")
###
### # similar enough to mgcv?
### fit_mgcv4 <- mgcv::gam(
### present ~ s(depth_scaled, k = 5),
### data = d,
### family = binomial()
### )
### g_mgcv <- ggeffects::ggpredict(fit_mgcv4, "depth_scaled [all]")
### plot(g_mgcv)
###
### expect_equal(as.numeric(g$predicted), as.numeric(g_mgcv$predicted), tolerance = 1e-2)
### expect_equal(as.numeric(g$std.error), as.numeric(g_mgcv$std.error), tolerance = 1e-1)
###
### # with some random fields:
### fit_sp <- sdmTMB(
### present ~ depth_scaled,
### mesh = pcod_mesh_2011,
### data = d,
### spatial = "on",
### family = binomial()
### )
### g <- ggeffects::ggpredict(fit_sp, "depth_scaled [all]")
### expect_s3_class(g, "data.frame")
### plot(g)
###
### gm <- ggeffects::ggemmeans(fit_sp, "depth_scaled [all]")
### gp <- ggeffects::ggpredict(fit_sp, "depth_scaled [all]")
### ge <- ggeffects::ggeffect(fit_sp, "depth_scaled [all]")
### expect_equal(gm$predicted, gp$predicted, tolerance = 1e-3)
### expect_equal(gm$predicted, ge$predicted, tolerance = 1e-3)
### })
###
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.