Nothing
## test_that("Epsilon models work with RW spatiotemporal fields", {
## skip_on_cran()
##
## pcod_spde <- pcod_mesh_2011
## pcod_2011$year_centered <- pcod_2011$year - mean(pcod_2011$year)
##
## # Fit model with RW fields, no trend
## m1 <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year),
## data = pcod_2011,
## time = "year",
## mesh = pcod_spde,
## family = tweedie(link = "log"),
## spatiotemporal = "RW"
## )
##
## # The way to check that the models are giving the right results is to
## # create a new dummy variable, include that as a predictor for the time
## # varying model. It won't fully converge (without fixing the parameter as we
## # do below), because it's not identifiable, but parameter estimates for
## # everything else comparable.
## pcod_2011$dummy <- 0
## m2 <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year),
## data = pcod_2011,
## time = "year",
## mesh = pcod_spde,
## family = tweedie(link = "log"),
## epsilon_predictor = "dummy",
## control = sdmTMBcontrol(
## lower = list(b_epsilon = -1), upper = list(b_epsilon = 1),
## map = list(b_epsilon = factor(NA)), start = list(b_epsilon = 0)
## ),
## spatiotemporal = "RW"
## )
##
## expect_equal(tidy(m1, "ran_par")$estimate, tidy(m2, "ran_par")$estimate, tolerance = 0.001)
## expect_equal(logLik(m1)[1], logLik(m2)[1])
## })
##
## test_that("Epsilon models work with AR1 spatiotemporal fields", {
## skip_on_cran()
##
## pcod_spde <- pcod_mesh_2011
## pcod_2011$year_centered <- pcod_2011$year - mean(pcod_2011$year)
##
## # Fit model with AR1 fields, no trend
## m1 <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year),
## data = pcod_2011,
## time = "year",
## mesh = pcod_spde,
## family = tweedie(link = "log"),
## spatiotemporal = "AR1"
## )
##
## # The way to check that the models are giving the right results is to
## # create a new dummy variable, include that as a predictor for the time
## # varying model. It won't fully converge (without fixing the parameter as we
## # do below), because it's not identifiable, but parameter estimates for
## # everything else comparable.
## pcod_2011$dummy <- 0
## m2 <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year),
## data = pcod_2011,
## time = "year",
## mesh = pcod_spde,
## family = tweedie(link = "log"),
## epsilon_predictor = "dummy",
## control = sdmTMBcontrol(
## lower = list(b_epsilon = -1), upper = list(b_epsilon = 1),
## map = list(b_epsilon = factor(NA)), start = list(b_epsilon = 0)
## ),
## spatiotemporal = "AR1"
## )
##
## expect_equal(tidy(m1, "ran_par")$estimate, tidy(m2, "ran_par")$estimate, tolerance = 0.001)
## expect_equal(logLik(m1)[1], logLik(m2)[1])
## })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.