R/segTraj_Gmean_simultanee.R

Defines functions Gmean_simultanee

Documented in Gmean_simultanee

# Gmean_simultanee
#' Gmean_simultanee  calculates the cost matrix for a segmentation model with
#' changes in the mean and variance for all signals
#' @param Don the bivariate signal
#' @param lmin minimum size for a segment, default value is 2
#' @param sameVar whether variance is the same for each segment.
#' @return the cost matrix G(i,j) which contains the variance of the data
#'   between point (i+1) to point j
Gmean_simultanee <- function(Don, lmin, sameVar = FALSE) {
  n <- dim(Don)[2]

  if (sameVar) {
    ## every element of the list is the cost motrix for one signal
    matD_list <- lapply(1:2, function(nb) {
      Res <- matrix(Inf, n, n)
      z <- Don[nb, ] 
      z2 <- z^2
      z2i <- cumsum_cpp(z2)
      zi <- cumsum_cpp(z)
      # z2i = cumsum(z2)
      # zi  = cumsum(z)
      z2i <- z2i[lmin:n]
      zi <- zi[lmin:n]
      Res[1, lmin:n] <- z2i - ((zi^2) / (lmin:n))
      nl <- n - lmin + 1
      for (i in 2:nl)
      {
        ni <- n - i - lmin + 3
        z2i <- z2i[2:ni] - z2[i - 1]
        zi <- zi[2:ni] - z[i - 1]
        deno <- ((i + lmin - 1):n) - i + 1
        Res[i, (i + lmin - 1):n] <- z2i - ((zi^2) / deno)
      }
      return(Res)
    })
  } else {
    if (lmin < 5) {
      cat("lmin =", lmin, 
          " and should be > 5 when sameV = FALSE 
          to avoid variance estimation instability  ", "\n")
    }
    # segmentation with heterogeneous variances

    matD_list <- lapply(1:2, function(nb) {
      Res <- matrix(Inf, n, n)
      z <- Don[nb, ]
      z2 <- z^2
      # z2i = cumsum(z2)
      # zi  = cumsum(z)
      z2i <- cumsum_cpp(z2)
      zi <- cumsum_cpp(z)
      z2i <- z2i[lmin:n]
      zi <- zi[lmin:n]
      # if(nb == 2) browser()
      Res[1, lmin:n] <- (lmin:n) * log((z2i - (zi^2) / (lmin:n)) / (lmin:n))
      nl <- n - lmin + 1
      for (i in 2:nl) {
        ni <- n - i - lmin + 3
        z2i <- z2i[2:ni] - z2[i - 1]
        zi <- zi[2:ni] - z[i - 1]
        tmp_gmean <- (z2i - (zi^2) / (lmin:(n - i + 1))) / (lmin:(n - i + 1))
        if (any(tmp_gmean <= 0)) {
          # browser()
          stop(paste0("Problem with a segment starting at point ", i,
                      " (once subsampled) and ending at point ", i + lmin - 1,
                      ". (or maybe after also). Please check if the segment 
                      has a potentially very low variance 
                      compared to the rest of the serie. 
                      This could happen if there are interpolations of
                      trajectories or if data have not been properly cleaned
                      (e.g. motionless gps points due to a fallen devices).
                      The algorithm cannot work with 
                      series of (near-)identical points."))
        }
        Res[i, (i + lmin - 1):n] <- (lmin:(n - i + 1)) * (log(tmp_gmean))
      }
      return(Res)
    })
  }
  matD <- Reduce("+", matD_list)
  invisible(matD)
}

Try the segclust2d package in your browser

Any scripts or data that you put into this service are public.

segclust2d documentation built on Oct. 11, 2021, 9:10 a.m.