residuals.sem | R Documentation |
These functions compute residual covariances, variance-standardized
residual covariances, and normalized residual covariances
for the observed variables in a structural-equation
model fit by sem
.
## S3 method for class 'sem'
residuals(object, ...)
## S3 method for class 'msem'
residuals(object, ...)
## S3 method for class 'sem'
standardizedResiduals(object, ...)
## S3 method for class 'msem'
standardizedResiduals(object, ...)
## S3 method for class 'objectiveML'
normalizedResiduals(object, ...)
## S3 method for class 'objectiveGLS'
normalizedResiduals(object, ...)
## S3 method for class 'msemObjectiveML'
normalizedResiduals(object, ...)
object |
an object inheriting from class |
... |
not for the user. |
Residuals are defined as S - C
, where S
is the sample covariance matrix
of the observed variables and C
is the model-reproduced covariance matrix.
The standardized residual covariance for a pair of variables divides the
residual covariance by the product of the sample standard deviations of the
two variables, (s_{ij} - c_{ij})/(s_{ii}s_{jj})^{1/2}
. The normalized residual
is given by
\frac{s_{ij}-c_{ij}} {[(c_{ii}c_{jj}-c_{ij}^2)/N^{*}]^{1/2}}
where N^{*}
is the number of observations minus one if the model is fit to a
covariance matrix, or the number of observations if it is fit to a raw moment matrix.
Each function returns a matrix of residuals.
John Fox jfox@mcmaster.ca
Bollen, K. A. (1989) Structural Equations With Latent Variables. Wiley.
sem
# In the first example, readMoments() and specifyModel() read from the
# input stream. This example cannot be executed via example() but can be entered
# at the command prompt. The example is repeated using file input;
# this example can be executed via example().
## Not run:
# Duncan, Haller, and Portes peer-influences model
R.DHP <- readMoments(diag=FALSE, names=c("ROccAsp", "REdAsp", "FOccAsp",
"FEdAsp", "RParAsp", "RIQ", "RSES", "FSES", "FIQ", "FParAsp"))
.6247
.3269 .3669
.4216 .3275 .6404
.2137 .2742 .1124 .0839
.4105 .4043 .2903 .2598 .1839
.3240 .4047 .3054 .2786 .0489 .2220
.2930 .2407 .4105 .3607 .0186 .1861 .2707
.2995 .2863 .5191 .5007 .0782 .3355 .2302 .2950
.0760 .0702 .2784 .1988 .1147 .1021 .0931 -.0438 .2087
model.dhp <- specifyModel()
RParAsp -> RGenAsp, gam11, NA
RIQ -> RGenAsp, gam12, NA
RSES -> RGenAsp, gam13, NA
FSES -> RGenAsp, gam14, NA
RSES -> FGenAsp, gam23, NA
FSES -> FGenAsp, gam24, NA
FIQ -> FGenAsp, gam25, NA
FParAsp -> FGenAsp, gam26, NA
FGenAsp -> RGenAsp, beta12, NA
RGenAsp -> FGenAsp, beta21, NA
RGenAsp -> ROccAsp, NA, 1
RGenAsp -> REdAsp, lam21, NA
FGenAsp -> FOccAsp, NA, 1
FGenAsp -> FEdAsp, lam42, NA
RGenAsp <-> RGenAsp, ps11, NA
FGenAsp <-> FGenAsp, ps22, NA
RGenAsp <-> FGenAsp, ps12, NA
ROccAsp <-> ROccAsp, theta1, NA
REdAsp <-> REdAsp, theta2, NA
FOccAsp <-> FOccAsp, theta3, NA
FEdAsp <-> FEdAsp, theta4, NA
sem.dhp <- sem(model.dhp, R.DHP, 329,
fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp'))
residuals(sem.dhp)
normalizedResiduals(sem.dhp)
standardizedResiduals(sem.dhp) # same as residuals because model is fit to correlations
## End(Not run)
# The following example can be executed via example():
etc <- system.file(package="sem", "etc") # path to data and model files
(R.DHP <- readMoments(file=file.path(etc, "R-DHP.txt"),
diag=FALSE, names=c("ROccAsp", "REdAsp", "FOccAsp",
"FEdAsp", "RParAsp", "RIQ", "RSES", "FSES", "FIQ", "FParAsp")))
(model.dhp <- specifyModel(file=file.path(etc, "model-DHP.txt")))
(sem.dhp <- sem(model.dhp, R.DHP, 329,
fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp')))
residuals(sem.dhp)
normalizedResiduals(sem.dhp)
standardizedResiduals(sem.dhp) # same as residuals because model is fit to correlations
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.