Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(semboottools)
library(lavaan)
## ----eval = FALSE-------------------------------------------------------------
# standardizedSolution_boot(object,
# level = .95,
# type = "std.all",
# boot_delta_ratio = FALSE,
# boot_ci_type = c("perc", "bc", "bca.simple"),
# save_boot_est_std = TRUE,
# boot_pvalue = TRUE,
# boot_pvalue_min_size = 1000,
# ...)
## -----------------------------------------------------------------------------
# Set seed for reproducibility
set.seed(1234)
# Generate data
n <- 1000
x <- runif(n) - 0.5
m <- 0.20 * x + rnorm(n)
y <- 0.17 * m + rnorm(n)
dat <- data.frame(x, y, m)
# Specify mediation model in lavaan syntax
mod <- '
m ~ a * x
y ~ b * m + cp * x
ab := a * b
total := a * b + cp
'
## -----------------------------------------------------------------------------
# (should use ≥2000 in real studies)
fit <- sem(mod, data = dat, se = "boot", bootstrap = 500)
std_boot <- standardizedSolution_boot(fit)
print(std_boot)
## -----------------------------------------------------------------------------
# this function also do not require 'se = "boot"' when fitting the model
fit2 <- sem(mod, data = dat, fixed.x = FALSE)
fit2 <- store_boot(fit2, R = 500)
std_boot2 <- standardizedSolution_boot(fit2)
print(std_boot)
## ----eval = FALSE-------------------------------------------------------------
# # Change confidence level
# std_boot <- standardizedSolution_boot(fit, level = 0.99)
# # Use bias-corrected bootstrap CIs
# std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc")
# std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bca.simple")
# # Compute delta ratio
# std_boot <- standardizedSolution_boot(fit, boot_delta_ratio = TRUE)
# # Do not save bootstrap estimates
# std_boot <- standardizedSolution_boot(fit, save_boot_est_std = FALSE)
# # Turn off asymmetric bootstrap p-values
# std_boot <- standardizedSolution_boot(fit, boot_pvalue = FALSE)
# # Combine options
# std_boot <- standardizedSolution_boot(fit,
# boot_ci_type = "bc",
# boot_delta_ratio = TRUE)
## ----eval = FALSE-------------------------------------------------------------
#
# # Print standardized solution in friendly format
# print(std_boot, output = "text")
# # Print with more decimal places (e.g., 5 decimal digits)
# print(std_boot, nd = 5)
# # Print only bootstrap confidence intervals
# print(std_boot, boot_ci_only = TRUE)
# # Print both unstandardized and standardized solution
# print(std_boot, standardized_only = FALSE)
# # Combine options: more decimals + show both solutions
# print(std_boot, nd = 4, standardized_only = FALSE)
# # Combine options: show only bootstrap CI, 5 decimal places
# print(std_boot, boot_ci_only = TRUE, nd = 5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.