tests/testthat/test-est_change_approx_single.R

library(testthat)
library(lavaan)
library(semfindr)

# A path model
# fixed.x: TRUE (default)
# Labelled: Some are labelled
# User-defined parameters: At least one

mod <-
'
m1 ~ iv1 + a2 * iv2
dv ~ b * m1
a1b := a2 * b
'

dat <- pa_dat

dat0 <- dat[1:50, ]
fit <- lavaan::sem(mod, dat0)

# From scores
fit_est_change_approx <- lavScores(fit) %*% vcov(fit) *
  nobs(fit) / (nobs(fit) - 1)
# Hessian (inverse of covariance) with scale adjustment
information_fit <- lavInspect(fit, what = "information") * (nobs(fit) - 1)
# Compare information_fit with vcov
tmp1 <- solve(lavTech(fit, what = "information") * (nobs(fit)))
tmp2 <- lavTech(fit, "vcov")
# Short cut for computing quadratic form (https://stackoverflow.com/questions/27157127/efficient-way-of-calculating-quadratic-forms-avoid-for-loops)
gcd_approx <- rowSums(
  (fit_est_change_approx %*% information_fit) * fit_est_change_approx
)

gcd_approx2 <- est_change_approx(fit)

test_that("Check against known results", {
    expect_equal(ignore_attr = TRUE,
        gcd_approx2[, "gcd_approx"],
        gcd_approx
      )
  })

test1 <- est_change_approx(fit, c("~"))
test2 <- est_change_approx(fit, c("~~"))
test3 <- est_change_approx(fit, c("m1 ~ iv1", "~~"))

test_that("est_change_approx: Selected parameters", {
    expect_true(all((colnames(test1) %in%
                  c("m1~iv1", "m1~iv2", "dv~m1",
                    "gcd_approx"))))
    expect_true(all(colnames(test2) %in%
                  c("iv1~~iv2", "m1~~m1", "dv~~dv",
                    "iv1~~iv1", "iv2~~iv2",
                    "gcd_approx")))
    expect_true(all(colnames(test3) %in%
                  c("iv1~~iv2", "m1~iv1", "m1~~m1",
                    "dv~~dv", "iv1~~iv1", "iv2~~iv2",
                    "gcd_approx")))
  })


test_that("User parameters should return error or excluded", {
    expect_error(est_change_approx(fit, "a1b"))
    expect_equal(intersect(colnames(est_change_approx(fit, c("m1 ~ iv1"))), "a1b"),
                 character(0))
  })


# With fixed parameters

mod <-
'
m1 ~ iv1 + iv2
dv ~ m1
'

dat <- pa_dat

dat0 <- dat[1:50, ]
fit <- lavaan::sem(mod, dat0)

# From scores
fit_est_change_approx <- lavScores(fit) %*% vcov(fit) *
  nobs(fit) / (nobs(fit) - 1)
# Hessian (inverse of covariance) with scale adjustment
information_fit <- lavInspect(fit, what = "information") * (nobs(fit) - 1)
# Compare information_fit with vcov
tmp1 <- solve(lavTech(fit, what = "information") * (nobs(fit)))
tmp2 <- lavTech(fit, "vcov")
# Short cut for computing quadratic form (https://stackoverflow.com/questions/27157127/efficient-way-of-calculating-quadratic-forms-avoid-for-loops)
gcd_approx <- rowSums(
  (fit_est_change_approx %*% information_fit) * fit_est_change_approx
)

gcd_approx2 <- est_change_approx(fit)

test_that("Check against known results", {
    expect_equal(ignore_attr = TRUE,
        gcd_approx2[, "gcd_approx"],
        gcd_approx
      )
  })


# CFA model with selected loadings

mod <-
'
f1 =~  x1 + x2 + x3
f2 =~  x4 + x5 + x6
f1 ~~ f2
'

dat <- cfa_dat

dat0 <- dat[1:50, ]
fit <- lavaan::cfa(mod, dat0)

# From scores
fit_est_change_approx <- lavScores(fit) %*% vcov(fit) *
  nobs(fit) / (nobs(fit) - 1)
fit_est_change_approx <- fit_est_change_approx[, 1:4]
# Hessian (inverse of covariance) with scale adjustment
information_fit <- lavInspect(fit, what = "information") * (nobs(fit) - 1)
information_fit <- information_fit[1:4, 1:4]
# Compare information_fit with vcov
tmp1 <- solve(lavTech(fit, what = "information") * (nobs(fit)))
tmp2 <- lavTech(fit, "vcov")
tmp1 <- tmp1[1:4, 1:4]
tmp2 <- tmp2[1:4, 1:4]
# Short cut for computing quadratic form (https://stackoverflow.com/questions/27157127/efficient-way-of-calculating-quadratic-forms-avoid-for-loops)
gcd_approx <- rowSums(
  (fit_est_change_approx %*% information_fit) * fit_est_change_approx
)

gcd_approx2 <- est_change_approx(fit, parameters = "=~")

test_that("Check against known results", {
    expect_equal(ignore_attr = TRUE,
        gcd_approx2[, "gcd_approx"],
        gcd_approx
      )
  })

Try the semfindr package in your browser

Any scripts or data that you put into this service are public.

semfindr documentation built on April 3, 2025, 5:58 p.m.