semsfa: Semiparametric Estimation of Stochastic Frontier Models

Share:

Semiparametric Estimation of Stochastic Frontier Models following a two step procedure: in the first step semiparametric or nonparametric regression techniques are used to relax parametric restrictions of the functional form representing technology and in the second step variance parameters are obtained by pseudolikelihood estimators or by method of moments.

Author
Giancarlo Ferrara and Francesco Vidoli
Date of publication
2015-02-18 11:36:02
Maintainer
Giancarlo Ferrara <giancarlo.ferrara@gmail.com>
License
GPL
Version
1.0

View on CRAN

Man pages

efficiencies.semsfa
Prediction of the individual efficiency score
fan
Pseudolikelihood estimator of the lambda parameter
plot.semsfa
Default SEMSFA plotting
semsfa
Semiparametric Estimation of Stochastic Frontier Models
semsfa-package
Semiparametric Stochastic Frontier Models
summary.semsfa
Summary for 'semsfa' object

Files in this package

semsfa
semsfa/NAMESPACE
semsfa/R
semsfa/R/semsfa.R
semsfa/R/summary.semsfa.R
semsfa/R/fan.r
semsfa/R/efficiencies.semsfa.R
semsfa/R/plot.semsfa.R
semsfa/MD5
semsfa/DESCRIPTION
semsfa/man
semsfa/man/fan.Rd
semsfa/man/semsfa.Rd
semsfa/man/plot.semsfa.Rd
semsfa/man/efficiencies.semsfa.Rd
semsfa/man/summary.semsfa.Rd
semsfa/man/semsfa-package.Rd