plot.semsfa: Default SEMSFA plotting

Description Usage Arguments Value Author(s) See Also Examples

View source: R/plot.semsfa.R

Description

This function plots the semiparametric/nonparametric intermediate model object estimated in the first step of the algorithm and, if efficiencies.semsfa() is esecuted, individual point estimate of the efficiency.

Usage

1
2
## S3 method for class 'semsfa'
plot(x, g.type, mod, ...)

Arguments

x

a semsfa object as returned from semsfa() or efficiencies.semsfa()

g.type

a character string indicating the type of plot. Possible values are: "reg" to plot the semiparametric/nonparametric model object estimated in the first step from semsfa(), "eff" to draw point estimate of the efficiency obtained from efficiencies.semsfa()

mod

a character string indicating the plot style for g.type="eff": "hist" for histogram and "dens" for density plot

...

further arguments passed to plot.default.

Value

The function simply generates plots.

Author(s)

Giancarlo Ferrara and Francesco Vidoli

See Also

semsfa, efficiencies.semsfa.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
set.seed(0)
n<-200

#generate data
x<- runif(n, 1, 2)
fy<- 2+30*x-5*x^2
v<- rnorm(n, 0, 1)
u<- abs(rnorm(n,0,2.5))
#production frontier
y <- fy + v - u
dati<-data.frame(y,x)

#first-step: gam, second-step: fan (default)
o<-semsfa(y~s(x),dati,sem.method="gam")
#the following plot will be like that generated by plot.gam
plot(o,g.type="reg")

#adding a covariate
z<- runif(n, 1, 2)
dati$z<-z

#first-step: kernel, second-step: fan (default)
o<-semsfa(y~x+z,dati,sem.method="kernel")
#the plot will be like that generated by a plot.npreg
## Not run: plot(o,g.type="reg")

#calculate efficiencies ...
a<-efficiencies.semsfa(o)
plot(a,g.type="eff",mod="dens")

#adding further parameters as for plot.default: col, main, xlim, ...
plot(a,g.type="eff",mod="dens",col=2,main="Density Efficiency",xlim=c(0,1),xlab="Efficiency")

Example output

Loading required package: mgcv
Loading required package: nlme
This is mgcv 1.8-17. For overview type 'help("mgcv-package")'.
Loading required package: np
Nonparametric Kernel Methods for Mixed Datatypes (version 0.60-3)
[vignette("np_faq",package="np") provides answers to frequently asked questions]
[vignette("np",package="np") an overview]
[vignette("entropy_np",package="np") an overview of entropy-based methods]

Multistart 1 of 2 |
Multistart 1 of 2 |
Multistart 1 of 2 |
Multistart 1 of 2 /
Multistart 1 of 2 |
Multistart 1 of 2 |
Multistart 2 of 2 |
Multistart 2 of 2 |
Multistart 2 of 2 /
Multistart 2 of 2 |
Multistart 2 of 2 |
                   

semsfa documentation built on April 21, 2018, 1:05 a.m.