R/deprecated.R

Defines functions vcov.lcmcross efficiencies.lcmcross print.summary.lcmcross summary.lcmcross residuals.lcmcross nobs.lcmcross marginal.lcmcross logLik.lcmcross ic.lcmcross fitted.lcmcross coef.summary.lcmcross coef.lcmcross estfun.lcmcross bread.lcmcross print.lcmcross lcmcross

Documented in bread.lcmcross coef.lcmcross coef.summary.lcmcross efficiencies.lcmcross estfun.lcmcross fitted.lcmcross ic.lcmcross lcmcross logLik.lcmcross marginal.lcmcross nobs.lcmcross print.lcmcross print.summary.lcmcross residuals.lcmcross summary.lcmcross vcov.lcmcross

################################################################################
#                                                                              #
# Deprecated functions for the sfaR package                                    #
#                                                                              #
################################################################################

#' Deprecated functions of sfaR
#' 
#' @description
#' These functions are provided for compatibility with older versions of 
#' \sQuote{sfaR} only, and could be defunct at a future release.
#' 
#' @name sfaR-deprecated
# @aliases sfaR-deprecated
#' 
#' @param formula A symbolic description of the model to be estimated based on
#' the generic function \code{formula} (see section \sQuote{Details}).
#' @param uhet A one-part formula to account for heteroscedasticity in the
#' one-sided error variance (see section \sQuote{Details}).
#' @param vhet A one-part formula to account for heteroscedasticity in the
#' two-sided error variance (see section \sQuote{Details}).
#' @param thet A one-part formula to account for technological heterogeneity in
#' the construction of the classes.
#' @param logDepVar Logical. Informs whether the dependent variable is logged
#' (\code{TRUE}) or not (\code{FALSE}). Default = \code{TRUE}.
#' @param data The data frame containing the data.
#' @param subset An optional vector specifying a subset of observations to be
#' used in the optimization process.
#' @param weights An optional vector of weights to be used for weighted 
#' log-likelihood. Should be \code{NULL} or numeric vector with positive values. 
#' When \code{NULL}, a numeric vector of 1 is used.
#' @param wscale Logical. When \code{weights} is not \code{NULL}, a scaling
#' transformation is used such that the \code{weights} sums to the sample 
#' size. Default \code{TRUE}. When \code{FALSE} no scaling is used.
#' @param S If \code{S = 1} (default), a production (profit) frontier is
#' estimated: \eqn{\epsilon_i = v_i-u_i}. If \code{S = -1}, a cost frontier is
#' estimated: \eqn{\epsilon_i = v_i+u_i}.
#' @param udist Character string. Distribution specification for the one-sided
#' error term. Only the half normal distribution \code{'hnormal'} (Aigner
#' \emph{et al.}, 1977, Meeusen and Vandenbroeck, 1977) is currently
#' implemented.
#' @param start Numeric vector. Optional starting values for the maximum
#' likelihood (ML) estimation.
#' @param whichStart Integer. If \code{'whichStart = 1'}, the starting values 
#' are obtained from the method of moments. When \code{'whichStart = 2'}
#' (Default), the model is initialized by solving the homoscedastic pooled 
#' cross section SFA model. \code{'whichStart = 1'} can be fast.
#' @param initAlg Character string specifying the algorithm used for 
#' initialization and obtain the starting values (when \code{'whichStart = 2'}).
#' Only \pkg{maxLik} package algorithms are available: 
#' \itemize{ \item \code{'bfgs'}, for Broyden-Fletcher-Goldfarb-Shanno 
#' (see \code{\link[maxLik:maxBFGS]{maxBFGS}})
#'  \item \code{'bhhh'}, for Berndt-Hall-Hall-Hausman 
#'  (see \code{\link[maxLik:maxBHHH]{maxBHHH}}) 
#'  \item \code{'nr'}, for Newton-Raphson (see \code{\link[maxLik:maxNR]{maxNR}})
#' \item \code{'nm'}, for Nelder-Mead - Default - 
#'  (see \code{\link[maxLik:maxNM]{maxNM}})
#' \item \code{'cg'}, for Conjugate Gradient 
#' (see \code{\link[maxLik:maxCG]{maxCG}}) \item \code{'sann'}, for Simulated 
#' Annealing (see \code{\link[maxLik:maxSANN]{maxSANN}})
#' }
#' @param initIter Maximum number of iterations for initialization algorithm.
#' Default \code{100}.
#' @param lcmClasses Number of classes to be estimated (default = \code{2}). A
#' maximum of five classes can be estimated.
##' @param method Optimization algorithm used for the estimation.  Default =
#' \code{'bfgs'}. 11 algorithms are available: \itemize{ \item \code{'bfgs'},
#' for Broyden-Fletcher-Goldfarb-Shanno (see
#' \code{\link[maxLik:maxBFGS]{maxBFGS}}) \item \code{'bhhh'}, for
#' Berndt-Hall-Hall-Hausman (see \code{\link[maxLik:maxBHHH]{maxBHHH}}) \item
#' \code{'nr'}, for Newton-Raphson (see \code{\link[maxLik:maxNR]{maxNR}}) 
#' \item \code{'nm'}, for Nelder-Mead (see \code{\link[maxLik:maxNM]{maxNM}}) 
#' \item \code{'cg'}, for Conjugate Gradient 
#' (see \code{\link[maxLik:maxCG]{maxCG}}) \item \code{'sann'}, for Simulated 
#' Annealing (see \code{\link[maxLik:maxSANN]{maxSANN}})
#' \item \code{'ucminf'}, for a quasi-Newton type optimization with BFGS updating of 
#' the inverse Hessian and soft line search with a trust region type monitoring 
#' of the input to the line search algorithm 
#' (see \code{\link[ucminf:ucminf]{ucminf}})
#' \item \code{'mla'}, for general-purpose optimization based on
#' Marquardt-Levenberg algorithm (see \code{\link[marqLevAlg:mla]{mla}})
#' \item \code{'sr1'}, for Symmetric Rank 1 (see
#' \code{\link[trustOptim:trust.optim]{trust.optim}}) \item \code{'sparse'}, 
#' for trust regions and sparse Hessian 
#' (see \code{\link[trustOptim:trust.optim]{trust.optim}}) \item
#' \code{'nlminb'}, for optimization using PORT routines (see
#' \code{\link[stats:nlminb]{nlminb}})}
#' @param hessianType Integer. If \code{1} (default), analytic Hessian is
#' returned. If \code{2}, bhhh Hessian is estimated (\eqn{g'g}).
#' @param itermax Maximum number of iterations allowed for optimization.
#' Default = \code{2000}.
#' @param printInfo Logical. Print information during optimization. Default =
#' \code{FALSE}.
#' @param tol Numeric. Convergence tolerance. Default = \code{1e-12}.
#' @param gradtol Numeric. Convergence tolerance for gradient. Default =
#' \code{1e-06}.
#' @param stepmax Numeric. Step max for \code{ucminf} algorithm. Default =
#' \code{0.1}.
#' @param qac Character. Quadratic Approximation Correction for \code{'bhhh'}
#' and \code{'nr'} algorithms. If \code{'qac = stephalving'}, the step length
#' is decreased but the direction is kept. If \code{'qac = marquardt'}
#' (default), the step length is decreased while also moving closer to the pure
#' gradient direction. See \code{\link[maxLik:maxBHHH]{maxBHHH}} and
#' \code{\link[maxLik:maxNR]{maxNR}}.
#' @param extraPar Logical (default = \code{FALSE}). If \code{TRUE}, additional
#' parameters are returned (see \code{\link{coef}} or \code{\link{vcov}}).
#' @param ci Logical. Default = \code{FALSE}. If \code{TRUE}, the 95%
#' confidence interval for the different parameters (OLS or/and ML estimates) is
#' returned.
#' @param digits Numeric. Number of digits displayed in values.
#' @param grad Logical. Default = \code{FALSE}. If \code{TRUE}, the gradient
#' for the maximum likelihood (ML) estimates of the different parameters is
#' returned.
#' @param IC Character string. Information criterion measure. Three criteria
#' are available: \itemize{ \item \code{'AIC'} for Akaike information criterion
#' (default) \item \code{'BIC'} for Bayesian information criterion \item
#' \code{'HQIC'} for Hannan-Quinn information criterion }.
#' @param individual Logical. If \code{FALSE} (default), the sum of all
#' observations' log-likelihood values is returned. If \code{TRUE}, a vector of
#' each observation's log-likelihood value is returned.
#' @param level A number between between 0 and 0.9999 used for the computation
#' of (in-)efficiency confidence intervals (defaut = \code{0.95}). Not used in the
#' case of \code{lcmcross}.
#' @param object an object of class lcmcross (returned by the function
#' \code{\link{lcmcross}}).
#' @param newData Optional data frame that is used to calculate the efficiency 
#' estimates. If NULL (the default), the efficiency estimates are calculated 
#' for the observations that were used in the estimation.
#' @param x an object of class lcmcross (returned by the function
#' \code{\link{lcmcross}}).
#' @param ... additional arguments of frontier are passed to lcmcross; 
#' additional arguments of the print, bread, estfun, nobs methods are currently 
#' ignored.
#' 
#' @details
#'  The following functions are deprecated and could be removed from \pkg{sfaR} 
#'  in a near future. Use the replacement indicated below:
#'  \itemize{
#'  \item{lcmcross: \code{\link{sfalcmcross}}}
#'  \item{bread.lcmcross: \code{\link{bread.sfalcmcross}}}
#'  \item{coef.lcmcross: \code{\link{coef.sfalcmcross}}}
#'  \item{coef.summary.lcmcross: \code{\link{coef.summary.sfalcmcross}}}
#'  \item{efficiencies.lcmcross: \code{\link{efficiencies.sfalcmcross}}}
#'  \item{estfun.lcmcross: \code{\link{estfun.sfalcmcross}}}
#'  \item{fitted.lcmcross: \code{\link{fitted.sfalcmcross}}}
#'  \item{ic.lcmcross: \code{\link{ic.sfalcmcross}}}
#'  \item{logLik.lcmcross: \code{\link{logLik.sfalcmcross}}}
#'  \item{marginal.lcmcross: \code{\link{marginal.sfalcmcross}}}
#'  \item{nobs.lcmcross: \code{\link{nobs.sfalcmcross}}}
#'  \item{print.lcmcross: \code{\link{print.sfalcmcross}}}
#'  \item{print.summary.lcmcross: \code{\link{print.summary.sfalcmcross}}}
#'  \item{residuals.lcmcross: \code{\link{residuals.sfalcmcross}}}
#'  \item{summary.lcmcross: \code{\link{summary.sfalcmcross}}}
#'  \item{vcov.lcmcross: \code{\link{vcov.sfalcmcross}}}
#'  }
#'
NULL

# lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
lcmcross <- function(formula, uhet, vhet, thet, logDepVar = TRUE,
  data, subset, weights, wscale = TRUE, S = 1L, udist = "hnormal",
  start = NULL, whichStart = 2L, initAlg = "nm", initIter = 100,
  lcmClasses = 2, method = "bfgs", hessianType = 1, itermax = 2000L,
  printInfo = FALSE, tol = 1e-12, gradtol = 1e-06, stepmax = 0.1,
  qac = "marquardt") {
  .Deprecated(new = "sfalcmcross", package = "sfaR", msg = " `lcmcross` is deprecated, use 'sfalcmcross' instead for same functionality",
    old = "lcmcross")
  if (missing(subset)) {
    if (missing(weights)) {
      x <- sfalcmcross(formula = formula, uhet = uhet,
        vhet = vhet, thet = thet, logDepVar = logDepVar,
        data = data, wscale = wscale, S = S, udist = udist,
        start = start, whichStart = whichStart, initAlg = initAlg,
        initIter = initIter, lcmClasses = lcmClasses,
        method = method, hessianType = hessianType, itermax = itermax,
        printInfo = printInfo, tol = tol, gradtol = gradtol,
        stepmax = stepmax, qac = qac)
    } else {
      x <- sfalcmcross(formula = formula, uhet = uhet,
        vhet = vhet, thet = thet, logDepVar = logDepVar,
        data = data, weights = weights, wscale = wscale,
        S = S, udist = udist, start = start, whichStart = whichStart,
        initAlg = initAlg, initIter = initIter, lcmClasses = lcmClasses,
        method = method, hessianType = hessianType, itermax = itermax,
        printInfo = printInfo, tol = tol, gradtol = gradtol,
        stepmax = stepmax, qac = qac)
    }
  } else {
    if (missing(weights)) {
      x <- sfalcmcross(formula = formula, uhet = uhet,
        vhet = vhet, thet = thet, logDepVar = logDepVar,
        data = data, subset = subset, wscale = wscale,
        S = S, udist = udist, start = start, whichStart = whichStart,
        initAlg = initAlg, initIter = initIter, lcmClasses = lcmClasses,
        method = method, hessianType = hessianType, itermax = itermax,
        printInfo = printInfo, tol = tol, gradtol = gradtol,
        stepmax = stepmax, qac = qac)
    } else {
      x <- sfalcmcross(formula = formula, uhet = uhet,
        vhet = vhet, thet = thet, logDepVar = logDepVar,
        data = data, subset = subset, weights = weights,
        wscale = wscale, S = S, udist = udist, start = start,
        whichStart = whichStart, initAlg = initAlg, initIter = initIter,
        lcmClasses = lcmClasses, method = method, hessianType = hessianType,
        itermax = itermax, printInfo = printInfo, tol = tol,
        gradtol = gradtol, stepmax = stepmax, qac = qac)
    }
  }
  class(x) <- c("lcmcross", "sfalcmcross")
  return(x)
}

# print.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
print.lcmcross <- function(x, ...) {
  .Deprecated(new = "print.sfalcmcross", package = "sfaR",
    msg = " `print.lcmcross` is deprecated, use 'print.sfalcmcross' instead for same functionality",
    old = "print.lcmcross")
  print.sfalcmcross(x, ...)
}

# bread.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
bread.lcmcross <- function(x, ...) {
  .Deprecated(new = "bread.sfalcmcross", package = "sfaR",
    msg = " `bread.lcmcross` is deprecated, use 'bread.sfalcmcross' instead for same functionality",
    old = "bread.lcmcross")
  bread.sfalcmcross(x = x, ...)
}

# estfun.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
estfun.lcmcross <- function(x, ...) {
  .Deprecated(new = "estfun.sfalcmcross", package = "sfaR",
    msg = " `estfun.lcmcross` is deprecated, use 'estfun.sfalcmcross' instead for same functionality",
    old = "estfun.lcmcross")
  estfun.sfalcmcross(x = x, ...)
}

# coef.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
coef.lcmcross <- function(object, extraPar = FALSE, ...) {
  .Deprecated(new = "coef.sfalcmcross", package = "sfaR", msg = " `coef.lcmcross` is deprecated, use 'coef.sfalcmcross' instead for same functionality",
    old = "coef.lcmcross")
  coef.sfalcmcross(object = object, extraPar = extraPar, ...)
}

# coef.summary.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
coef.summary.lcmcross <- function(object, ...) {
  .Deprecated(new = "coef.summary.sfalcmcross", package = "sfaR",
    msg = " `coef.summary.lcmcross` is deprecated, use 'coef.summary.sfalcmcross' instead for same functionality",
    old = "coef.summary.lcmcross")
  coef.summary.sfalcmcross(object = object, ...)
}

# fitted.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
fitted.lcmcross <- function(object, ...) {
  .Deprecated(new = "fitted.sfalcmcross", package = "sfaR",
    msg = " `fitted.lcmcross` is deprecated, use 'fitted.sfalcmcross' instead for same functionality",
    old = "fitted.lcmcross")
  fitted.sfalcmcross(object = object, ...)
}

# ic.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
ic.lcmcross <- function(object, IC = "AIC", ...) {
  .Deprecated(new = "ic.sfalcmcross", package = "sfaR", msg = " `ic.lcmcross` is deprecated, use 'ic.sfalcmcross' instead for same functionality",
    old = "ic.lcmcross")
  ic.sfalcmcross(object = object, IC = IC, ...)
}

# logLik.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
logLik.lcmcross <- function(object, individual = FALSE, ...) {
  .Deprecated(new = "logLik.sfalcmcross", package = "sfaR",
    msg = " `logLik.lcmcross` is deprecated, use 'logLik.sfalcmcross' instead for same functionality",
    old = "logLik.lcmcross")
  logLik.sfalcmcross(object = object, individual = individual,
    ...)
}

# marginal.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
marginal.lcmcross <- function(object, newData = NULL, ...) {
  .Deprecated(new = "marginal.sfalcmcross", package = "sfaR",
    msg = " `marginal.lcmcross` is deprecated, use 'marginal.sfalcmcross' instead for same functionality",
    old = "marginal.lcmcross")
  marginal.sfalcmcross(object = object, newData = newData)
}

# nobs.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
nobs.lcmcross <- function(object, ...) {
  .Deprecated(new = "nobs.sfalcmcross", package = "sfaR", msg = " `nobs.lcmcross` is deprecated, use 'nobs.sfalcmcross' instead for same functionality",
    old = "nobs.lcmcross")
  nobs.sfalcmcross(object = object, ...)
}

# residuals from sfalcmcross ----------
#' @rdname sfaR-deprecated
#' @export
residuals.lcmcross <- function(object, ...) {
  .Deprecated(new = "residuals.sfalcmcross", package = "sfaR",
    msg = " `residuals.lcmcross` is deprecated, use 'residuals.sfalcmcross' instead for same functionality",
    old = "residuals.lcmcross")
  residuals.sfalcmcross(object = object, ...)
}

# summary.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
summary.lcmcross <- function(object, grad = FALSE, ci = FALSE,
  ...) {
  .Deprecated(new = "summary.sfalcmcross", package = "sfaR",
    msg = " `summary.lcmcross` is deprecated, use 'summary.sfalcmcross' instead for same functionality",
    old = "summary.lcmcross")
  # class here
  su <- summary.sfalcmcross(object = object, grad = grad, ci = ci,
    ...)
  class(su) <- c("summary.lcmcross", "summary.sfalcmcross")
  su
}

# print.summary.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
print.summary.lcmcross <- function(x, digits = max(3, getOption("digits") -
  2), ...) {
  .Deprecated(new = "print.summary.sfalcmcross", package = "sfaR",
    msg = " `print.summary.lcmcross` is deprecated, use 'print.summary.sfalcmcross' instead for same functionality",
    old = "print.summary.lcmcross")
  print.summary.sfalcmcross(x = x, digits = digits, ...)
}

# efficiencies.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
efficiencies.lcmcross <- function(object, level = 0.95, newData = NULL,
  ...) {
  .Deprecated(new = "efficiencies.sfalcmcross", package = "sfaR",
    msg = " `efficiencies.lcmcross` is deprecated, use 'efficiencies.sfalcmcross' instead for same functionality",
    old = "efficiencies.lcmcross")
  efficiencies.sfalcmcross(object = object, level = level,
    newData = newData, ...)
}

# vcov.lcmcross ----------
#' @rdname sfaR-deprecated
#' @export
vcov.lcmcross <- function(object, ...) {
  .Deprecated(new = "vcov.sfalcmcross", package = "sfaR", msg = " `vcov.lcmcross` is deprecated, use 'vcov.sfalcmcross' instead for same functionality",
    old = "vcov.lcmcross")
  vcov.sfalcmcross(object = object, ...)
}

Try the sfaR package in your browser

Any scripts or data that you put into this service are public.

sfaR documentation built on Oct. 29, 2024, 9:07 a.m.