| moors_lss | R Documentation |
moors_lss is used to obtain the median, the half interquartile range and the quantile coefficient of skewness and kurtosis for a generalized log-gamma distribution.
moors_lss(mu = 0, sigma = 1, lambda = 1)
mu |
numeric, represents the location parameter of a generalized log-gamma distribution. Default value is 0. |
sigma |
numeric, represents the scale parameter of a generalized log-gamma distribution. Default value is 1. |
lambda |
numeric, represents the shape parameter of a generalized log-gamma distribution. Default value is 1. |
Carlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>
Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.
J. J. A. Moors (1988), A quantile alternative for kurtosis. The Statistician.
moors_lss(mu = 0,sigma = 1,lambda = -1) # Extreme value type I distribution, maximum case.
moors_lss(mu = 0,sigma = 1,lambda = 1) # Extreme value type I distribution, minimum case.
moors_lss(mu = 0,sigma = 1,lambda = 0.05) # Standard normal distribution.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.