Man pages for shapr
Prediction Explanation with Dependence-Aware Shapley Values

additional_regression_setupAdditional setup for regression-based methods
aicc_full_cppAICc formula for several sets, alternative definition
aicc_full_single_cppTemp-function for computing the full AICc with several X's...
append_vS_listAppends the new vS_list to the prev vS_list
categorical_to_one_hot_layerA 'torch::nn_module()' Representing a...
check_categorical_valid_MCsampCheck that all explicands has at least one valid MC sample in...
check_convergenceChecks the convergence according to the convergence threshold
check_groupsCheck that the group parameter has the right form and content
check_verboseFunction that checks the verbose parameter
cli_compute_vSPrinting messages in compute_vS with cli
cli_iterPrinting messages in iterative procedure with cli
cli_startupPrinting startup messages with cli
coalition_matrix_cppGet coalition matrix
compute_estimatesComputes the the Shapley values and their standard deviation...
compute_MSEv_eval_critMean Squared Error of the Contribution Function 'v(S)'
compute_shapleyCompute shapley values
compute_timeGathers and computes the timing of the different parts of the...
compute_vSComputes 'v(S)' for all features subsets 'S'.
convert_feature_name_to_idxConvert feature names into feature indices
correction_matrix_cppCorrection term with trace_input in AICc formula
create_coalition_tableDefine coalitions, and fetch additional information about...
create_ctreeBuild all the conditional inference trees
create_marginal_data_catCreate marginal categorical data for causal Shapley values
create_marginal_data_gaussianGenerate marginal Gaussian data using Cholesky decomposition
create_marginal_data_trainingFunction that samples data from the empirical marginal...
default_doc_exportExported documentation helper function.
default_doc_internalUnexported documentation helper function.
exact_coalition_tableGet table with all (exact) coalitions
explainExplain the output of machine learning models with...
explain_forecastExplain a forecast from time series models with...
finalize_explanationGathers the final output to create the explanation object
gauss_cat_lossA 'torch::nn_module()' Representing a 'gauss_cat_loss'
gauss_cat_parametersA 'torch::nn_module()' Representing a 'gauss_cat_parameters'
gauss_cat_sampler_most_likelyA 'torch::nn_module()' Representing a...
gauss_cat_sampler_randomA 'torch::nn_module()' Representing a...
gaussian_transformTransforms a sample to standardized normal distribution
gaussian_transform_separateTransforms new data to standardized normal (dimension 1)...
get_cov_matget_cov_mat
get_data_forecastSet up data for explain_forecast
get_data_specsFetches feature information from a given data set
get_extra_comp_args_defaultGets the default values for the extra computation arguments
get_extra_parametersThis includes both extra parameters and other objects
get_feature_specsGets the feature specifications form the model
get_iterative_args_defaultFunction to specify arguments of the iterative estimation...
get_max_n_coalitions_causalGet the number of coalitions that respects the causal...
get_model_specsFetches feature information from natively supported models
get_mu_vecget_mu_vec
get_output_args_defaultGets the default values for the output arguments
get_predict_modelGet predict_model function
get_S_causal_stepsGet the steps for generating MC samples for coalitions...
get_supported_approachesGets the implemented approaches
get_supported_modelsProvides a data.table with the supported models
get_valid_causal_coalitionsGet all coalitions satisfying the causal ordering
group_forecast_setupSet up user provided groups for explanation in a forecast...
hat_matrix_cppComputing single H matrix in AICc-function using the...
inv_gaussian_transform_cppTransforms new data to a standardized normal distribution
lag_dataLag a matrix of variables a specific number of lags for each...
mahalanobis_distance_cpp(Generalized) Mahalanobis distance
mcar_mask_generatorMissing Completely at Random (MCAR) Mask Generator
memory_layerA 'torch::nn_module()' Representing a Memory Layer
model_checkerCheck that the type of model is supported by the native...
observation_imputeGenerate permutations of training data using test...
observation_impute_cppGet imputed data
paired_samplerSampling Paired Observations
plot_MSEv_eval_critPlots of the MSEv Evaluation Criterion
plot.shaprPlot of the Shapley value explanations
plot_SV_several_approachesShapley value bar plots for several explanation objects
plot_vaeac_eval_critPlot the training VLB and validation IWAE for 'vaeac' models
plot_vaeac_imputed_ggpairsPlot Pairwise Plots for Imputed and True Data
predict_modelGenerate predictions for input data with specified model
prepare_dataGenerate data used for predictions and Monte Carlo...
prepare_data_causalGenerate data used for predictions and Monte Carlo...
prepare_data_copula_cppGenerate (Gaussian) Copula MC samples
prepare_data_copula_cpp_causGenerate (Gaussian) Copula MC samples for the causal setup...
prepare_data_gaussian_cppGenerate Gaussian MC samples
prepare_data_gaussian_cpp_causGenerate Gaussian MC samples for the causal setup with a...
prepare_data_single_coalitionCompute the conditional probabilities for a single coalition...
prepare_next_iterationPrepares the next iteration of the iterative sampling...
print_iterPrints iterative information
print.shaprPrint method for shapr objects
process_factor_dataTreat factors as numeric values
quantile_type7_cppCompute the quantiles using quantile type seven
reg_forecast_setupSet up exogenous regressors for explanation in a forecast...
regression.check_namespacesCheck that needed libraries are installed
regression.check_parametersCheck regression parameters
regression.check_recipe_funcCheck 'regression.recipe_func'
regression.check_sur_n_combCheck the 'regression.surrogate_n_comb' parameter
regression.check_vfold_cv_paraCheck the parameters that are sent to 'rsample::vfold_cv()'
regression.cv_messageProduce message about which batch prepare_data is working on
regression.get_string_to_RConvert the string into an R object
regression.get_tuneGet if model is to be tuned
regression.get_y_hatGet the predicted responses
regression.surrogate_aug_dataAugment the training data and the explicands
regression.train_modelTrain a tidymodels model via workflows
release_questionsAuxiliary function for the vignettes
rss_cppFunction for computing sigma_hat_sq
sample_coalitions_cpp_str_pairedWe here return a vector of strings/characters, i.e., a...
sample_coalition_tableGet table with sampled coalitions
sample_combinationsHelper function to sample a combination of training and...
sample_ctreeSample ctree variables from a given conditional inference...
save_resultsSaves the intermediate results to disk
setupcheck_setup
setup_approachSet up the framework for the chosen approach
shapley_setupSet up the kernelSHAP framework
shapley_weightsCalculate Shapley weight
shapr-packageshapr: Prediction Explanation with Dependence-Aware Shapley...
skip_connectionA 'torch::nn_module()' Representing a skip connection
specified_masks_mask_generatorA 'torch::nn_module()' Representing a...
specified_prob_mask_generatorA 'torch::nn_module()' Representing a...
testing_cleanupCleans out certain output arguments to allow perfect...
test_predict_modelModel testing function
vaeacInitializing a vaeac model
vaeac_categorical_parse_paramsCreates Categorical Distributions
vaeac_check_activation_funcFunction that checks the provided activation function
vaeac_check_cudaFunction that checks for access to CUDA
vaeac_check_epoch_valuesFunction that checks provided epoch arguments
vaeac_check_extra_named_listCheck vaeac.extra_parameters list
vaeac_check_logicalsFunction that checks logicals
vaeac_check_mask_genFunction that checks the specified masking scheme
vaeac_check_masking_ratioFunction that checks that the masking ratio argument is valid
vaeac_check_parametersFunction that calls all vaeac parameters check functions
vaeac_check_positive_integersFunction that checks positive integers
vaeac_check_positive_numericsFunction that checks positive numerics
vaeac_check_probabilitiesFunction that checks probabilities
vaeac_check_save_namesFunction that checks that the save folder exists and for a...
vaeac_check_save_parametersFunction that gives a warning about disk usage
vaeac_check_which_vaeac_modelFunction that checks for valid 'vaeac' model name
vaeac_check_x_colnamesFunction that checks the feature names of data and 'vaeac'...
vaeac_compute_normalizationCompute Featurewise Means and Standard Deviations
vaeac_datasetDataset used by the 'vaeac' model
vaeac_extend_batchExtends Incomplete Batches by Sampling Extra Data from...
vaeac_get_current_save_stateFunction that extracts additional objects from the...
vaeac_get_data_objectsFunction to set up data loaders and save file names
vaeac_get_evaluation_criteriaExtract the Training VLB and Validation IWAE from a list of...
vaeac_get_extra_para_defaultFunction to specify the extra parameters in the 'vaeac' model
vaeac_get_full_state_listFunction that extracts the state list objects from the...
vaeac_get_mask_generator_nameFunction that determines which mask generator to use
vaeac_get_model_from_checkpFunction to load a 'vaeac' model and set it in the right...
vaeac_get_n_decimalsFunction to get string of values with specific number of...
vaeac_get_optimizerFunction to create the optimizer used to train 'vaeac'
vaeac_get_save_file_namesFunction that creates the save file names for the 'vaeac'...
vaeac_get_val_iwaeCompute the Importance Sampling Estimator (Validation Error)
vaeac_get_x_explain_extendedFunction to extend the explicands and apply all relevant...
vaeac_impute_missing_entriesImpute Missing Values Using Vaeac
vaeac_kl_normal_normalCompute the KL Divergence Between Two Gaussian Distributions.
vaeac_normalize_dataNormalize mixed data for 'vaeac'
vaeac_normal_parse_paramsCreates Normal Distributions
vaeac_postprocess_dataPostprocess Data Generated by a vaeac Model
vaeac_preprocess_dataPreprocess Data for the vaeac approach
vaeac_print_train_summaryFunction to printout a training summary for the 'vaeac' model
vaeac_save_stateFunction that saves the state list and the current save state...
vaeac_train_modelTrain the Vaeac Model
vaeac_train_model_auxiliaryFunction used to train a 'vaeac' model
vaeac_train_model_continueContinue to Train the vaeac Model
vaeac_update_para_locationsMove 'vaeac' parameters to correct location
vaeac_update_pretrained_modelFunction that checks and adds a pre-trained 'vaeac' model
weight_matrixCalculate weighted matrix
weight_matrix_cppCalculate weight matrix
shapr documentation built on April 4, 2025, 12:18 a.m.