Nothing
#' sharp: Stability-enHanced Approaches using Resampling Procedures
#'
#' In stability selection and consensus clustering, resampling techniques are
#' used to enhance the reliability of the results. In this package,
#' hyper-parameters are calibrated by maximising model stability, which is
#' measured under the null hypothesis that all selection (or co-membership)
#' probabilities are identical. Functions are readily implemented for the use of
#' LASSO regression, sparse PCA, sparse (group) PLS or graphical LASSO in
#' stability selection, and hierarchical clustering, partitioning around
#' medoids, K means or Gaussian mixture models in consensus clustering.
#'
#' \tabular{ll}{ Package: \tab sharp\cr Type: \tab Package\cr Version: \tab
#' 1.4.6 \cr Date: \tab 2025-03-24 \cr License: \tab GPL (>= 3)\cr Maintainer:
#' \tab Barbara Bodinier \email{barbara.bodinier@@gmail.com}}
#'
#' @references \insertRef{JStatSoft}{sharp}
#'
#' \insertRef{ourstabilityselection}{sharp}
#'
#' \insertRef{stabilityselectionMB}{sharp}
#'
#' \insertRef{ConsensusClustering}{sharp}
#'
#' @name sharp-package
#'
#' @importFrom Rdpack reprompt
#' @importFrom mclust mclustBIC
#'
#' @examples
#' \donttest{
#' oldpar <- par(no.readonly = TRUE)
#' par(mar = c(5, 5, 5, 5))
#'
#' ## Regression models
#' # Data simulation
#' set.seed(1)
#' simul <- SimulateRegression(n = 100, pk = 50)
#'
#' # Stability selection
#' stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
#' CalibrationPlot(stab)
#' summary(stab)
#' SelectedVariables(stab)
#'
#'
#' ## Graphical models
#' # Data simulation
#' set.seed(1)
#' simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")
#'
#' # Stability selection
#' stab <- GraphicalModel(xdata = simul$data)
#' CalibrationPlot(stab)
#' summary(stab)
#' plot(stab)
#'
#'
#' ## PCA models
#' if (requireNamespace("elasticnet", quietly = TRUE)) {
#' # Data simulation
#' set.seed(1)
#' simul <- SimulateComponents(pk = c(5, 3, 4))
#' plot(simul)
#'
#' # Stability selection
#' stab <- BiSelection(
#' xdata = simul$data,
#' ncomp = 3,
#' implementation = SparsePCA
#' )
#' CalibrationPlot(stab)
#' summary(stab)
#' SelectedVariables(stab)
#' }
#'
#'
#' ## PLS models
#' if (requireNamespace("sgPLS", quietly = TRUE)) {
#' # Data simulation
#' set.seed(1)
#' simul <- SimulateRegression(n = 50, pk = c(10, 20, 30), family = "gaussian")
#'
#' # Stability selection
#' stab <- BiSelection(
#' xdata = simul$xdata, ydata = simul$ydata,
#' family = "gaussian", ncomp = 3,
#' implementation = SparsePLS
#' )
#' CalibrationPlot(stab)
#' summary(stab)
#' plot(stab)
#' }
#'
#' par(oldpar)
#' }
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.