R/plotSoilRelationGraph.R

Defines functions plotSoilRelationGraph .maximum.spanning.tree

Documented in plotSoilRelationGraph

# https://github.com/ncss-tech/sharpshootR/issues/7

## NOTE: dendrogram representation of community structure is only possible with some community detection algorithms

## TODO: investigate some heuristics for layout algorithm selection:
# layout_with_fr works most of the time
# layout_with_lgl works for most large graphs, but not when there are many disconnected sub-graphs
# layout_with_graphopt works but requires tinkering with parameters

# normalize transparency logic and argument names: should all be "alpha"

.maximum.spanning.tree <- function(x){
  stopifnot(requireNamespace("igraph"))
  # convert cost representation of weights to "strength"
  igraph::E(x)$weight <- -1 *  igraph::E(x)$weight
  # compute min spanning tree on "strength"
  x <- igraph::minimum.spanning.tree(x)
  # convert "strength" representation of weights back to cost
  igraph::E(x)$weight <- -1 *  igraph::E(x)$weight
  return(x)
}

# dendrogram representation relies on ape plotting functions
# ... are passed onto plot.igraph or plot.phylo




#' @title Plot a component relation graph
#'
#' @description Plot a component relation graph based on an adjacency or similarity matrix.
#'
#' @param m adjacency matrix
#' @param s central component; an empty character string is interpreted as no central component
#' @param plot.style plot style ('network', or 'dendrogram'), or 'none' for no graphical output
#' @param graph.mode interpretation of adjacency matrix: 'upper' or 'directed', see details
#' @param spanning.tree plot the minimum or maximum spanning tree ('min', 'max'), or, max spanning tree plus edges with weight greater than the n-th quantile specified in `spanning.tree`. See details and examples.
#' @param del.edges optionally delete edges with weights less than the specified quantile (0-1)
#' @param vertex.scaling.method 'degree' (default) or 'distance', see details
#' @param vertex.scaling.factor scaling factor applied to vertex size
#' @param edge.scaling.factor optional scaling factor applied to edge width
#' @param vertex.alpha optional transparency setting for vertices (0-1)
#' @param edge.transparency optional transparency setting for edges (0-1)
#' @param edge.col edge color, applied to all edges
#' @param edge.highlight.col edge color applied to all edges connecting to component named in `s`
#' @param g.layout an igraph layout function, defaults to `igraph::layout_with_fr`
#' @param vertex.label.color vertex label color
#' @param delete.singletons optionally delete vertices with no edges (`degree == 0`)
#' @param ... further arguments passed to plotting function
#' 
#' @note This function is a work in progress, ideas welcome.
#' 
#' @details Vertex size is based on a normalized index of connectivity: 
#' 
#'   - "degree" size = `sqrt(igraph::degree(g) / max(igraph::degree(g))) * scaling.factor`
#'   - "distance" size = `sqrt(igraph::distance(V -> s) / max(igraph::distance(V -> s))) * scaling.factor`, where distance(V->s) is the distance from all nodes to the named series, \code{s}. 
#'   
#' Edge width can be optionally scaled by edge weight by specifying an \code{edge.scaling.factor} value. The maximum spanning tree represents a sub-graph where the sum of edge weights are maximized. The minimum spanning tree represents a sub-graph where the sum of edge weights are minimized. The maximum spanning tree is likely a more useful simplification of the full graph, in which only the strongest relationships (e.g. most common co-occurrences) are preserved.
#' 
#' The maximum spanning tree + edges with weights > n-th quantile is an experimental hybrid. The 'backbone' of the graph is created by the maximum spanning tree, and augmented by 'strong' auxiliary edges--defined by a value between 0 and 1.
#' 
#' The \code{graph.mode} argument is passed to \code{igraph::graph_from_adjacency_matrix()} and determines how vertex relationships are coded in the adjacency matrix \code{m}. Typically, the default value of 'upper' (the upper triangle of \code{m} contains adjacency information) is the desired mode. If \code{m} contains directional information, set \code{graph.mode} to 'directed'. This has the side-effect of altering the default community detection algorithm from \code{igraph::cluster_fast_greedy} to \code{igraph::cluster_walktrap}.
#'
#' @return an igraph `graph` object is invisibly returned
#' 
#' @author D.E. Beaudette
#' 
#' @keywords hplot
#' 
#' @export
#'
#' @examples
#' if (requireNamespace("igraph") && requireNamespace("vegan")) {
#'   # load sample data set
#'   data(amador)
#' 
#'   # create weighted adjacency matrix (see ?component.adj.matrix for details)
#'   m <- component.adj.matrix(amador)
#' 
#'   # plot network diagram, with Amador soil highlighted
#'   plotSoilRelationGraph(m, s='amador')
#' 
#'   # dendrogram representation
#'   plotSoilRelationGraph(m, s='amador', plot.style='dendrogram')
#' 
#'   # compare methods
#'   m.o <- component.adj.matrix(amador, method='occurrence')
#' 
#'   op <- par(no.readonly = TRUE)
#' 
#'   par(mfcol=c(1,2))
#'   plotSoilRelationGraph(m, s='amador', plot.style='dendrogram')
#'   title('community matrix')
#'   plotSoilRelationGraph(m.o, s='amador', plot.style='dendrogram')
#'   title('occurence')
#' 
#'   # investigate max spanning tree
#'   plotSoilRelationGraph(m, spanning.tree='max')
#' 
#'   # investigate max spanning tree + edges with weights > 75-th pctile
#'   plotSoilRelationGraph(m, spanning.tree=0.75)
#' 
#'   par(op)
#' 
#'   \donttest{
#'   
#'     if(requireNamespace("curl") &
#'        curl::has_internet() &
#'        require(soilDB)) {
#'     
#'       # get similar data from soilweb, for the Pardee series
#'       s <- 'pardee'
#'       d <- siblings(s, component.data = TRUE)
#'     
#'       # normalize component names
#'       d$sib.data$compname <- tolower(d$sib.data$compname)
#'     
#'       # keep only major components
#'       d$sib.data <- subset(d$sib.data, subset=compkind == 'Series')
#'     
#'       # build adj. matrix and plot
#'       m <- component.adj.matrix(d$sib.data)
#'       plotSoilRelationGraph(m, s=s, plot.style='dendrogram')
#'     
#'       # alter plotting style, see ?plot.phylo
#'       plotSoilRelationGraph(m, s=s, plot.style='dendrogram', type='fan')
#'       plotSoilRelationGraph(m, s=s, plot.style='dendrogram', 
#'                             type='unrooted', use.edge.length=FALSE) 
#'     
#'     }
#'   }
#' }
plotSoilRelationGraph <- function(m, s='', plot.style = c('network', 'dendrogram', 'none'), graph.mode='upper', spanning.tree=NULL, del.edges=NULL, vertex.scaling.method='degree', vertex.scaling.factor=2, edge.scaling.factor=1, vertex.alpha=0.65, edge.transparency=1, edge.col=grey(0.5), edge.highlight.col='royalblue', g.layout=igraph::layout_with_fr, vertex.label.color='black', delete.singletons = FALSE, ...) {
  
  if (!requireNamespace("igraph")) {
    stop("package 'igraph' is required to plot soil relation graphs", call. = FALSE)
  }
  
  weight <- NULL
  name <- NULL
  
  # argument sanity
  plot.style <- match.arg(plot.style)
  
  # generate graph
  g <- igraph::graph.adjacency(adjmatrix = m, mode = graph.mode, weighted = TRUE)
  
  ## this might have to happen later on, after edge deletion
  # optionally delete singleton vertices
  if (delete.singletons) {
    g <- igraph::delete.vertices(g, igraph::degree(g) == 0) 
  }
  
  
  ### TODO ###
  ## figure out some heuristics for selecting a method: igraph::layout_with_fr is almost always the best one
  
  # when there are many clusters, layout_with_lgl doesn't work properly
  # switch back to layout_with_fr when > 5
  # g.n.clusters <-  igraph::clusters(g)$no
  
  # maybe this can be used as a heuristic as well:
  # igraph::betweenness(g)
  
  # 	# select layout if not provided
  # 	if(missing(g.layout)) {
  # 	  if(dim(m)[1] > 20 & g.n.clusters < 5) {
  # 	    g.layout <- igraph::layout_with_lgl
  # 	    message('layout: Large Graph Layout algorithm')
  # 	  }
  # 	  
  # 	  else {
  # 	    g.layout <- igraph::layout_with_fr
  # 	    message('layout: Fruchterman-Reingold algorithm')
  # 	  }
  # 	  
  # 	}
  ### TODO ###
  
  weight <- igraph::E(g)$weight
  
  # optionally prune weak edges less than threshold quantile
  if (!is.null(del.edges)) {
    g <-  igraph::delete.edges(g, igraph::E(g)[which(weight < quantile(weight, del.edges, na.rm = TRUE))])
  }
  
  # optionally compute min/max spanning tree
  if (!is.null(spanning.tree)) {
    # min spanning tree: not clear how this is useful
    if (spanning.tree == 'min') {
      g <-  igraph::minimum.spanning.tree(g)
    }
    
    # max spanning tree: useful when loading an entire region
    if (spanning.tree == 'max') {
      g <- .maximum.spanning.tree(g)
    }
    
    ## TODO: this needs more testing
    # max spanning tree + edges with weights > n-tile added back
    if (is.numeric(spanning.tree)) {
      # select edges and store weights
      es <- igraph::E(g)[which(weight > quantile(weight, spanning.tree, na.rm = TRUE))]
      es.w <- es$weight
      # trap obvious errors
      if (length(es.w) < 1)
        stop('no edges selected, use a smaller value for `spanning.tree`')
      
      # convert edge sequence to matrix of vertex ids
      e <- igraph::get.edges(g, es)
      # compute max spanning tree
      g.m <- .maximum.spanning.tree(g)
      
      ## TODO: there must be a better way
      # add edges and weight back one at a time
      for (i in 1:nrow(e)) {
        g.m <- igraph::add.edges(g.m, e[i, ], weight = es.w[i])
      }
      # remove duplicate edges
      g <- igraph::simplify(g.m)
    }
  }
  
  # transfer names
  igraph::V(g)$label <- igraph::V(g)$name 
  
  ## adjust size of vertex based on some measure of connectivity
  
  # use vertex distance
  # interpretation is intuitive, but will only work when:
  # 's' is a valid series name in 'm'
  # there is no possibility of disconnected vertices (e.g deletion of edges)
  if (vertex.scaling.method == 'distance' & s != '' & is.null(del.edges)) {
    # use the distance from named series
    vertexSize <- igraph::distances(g, v = igraph::V(g)[name == s], to = igraph::V(g))
    # note that the distance from 's' -> 's' is 0, so we replace with 1
    vertexSize <- c(1.5 * max(vertexSize, na.rm = TRUE), vertexSize[-1])
    igraph::V(g)$size <- sqrt(vertexSize / max(vertexSize)) * 10 * vertex.scaling.factor
  } else {
    # scale vertex by degree (number of connections)
    vertexSize <- igraph::degree(g)
    igraph::V(g)$size <- sqrt(vertexSize / max(vertexSize)) *  10 * vertex.scaling.factor
  }
  
  # optionally adjust edge width based on weight
  if (!missing(edge.scaling.factor)) {
    igraph::E(g)$width <- sqrt(igraph::E(g)$weight) * edge.scaling.factor
  }
  
  ## extract communities
  # the fast-greedy algorithm is fast, but dosn't work with directed graphs
  if (graph.mode == 'directed') {
    g.com <- igraph::cluster_walktrap(g) ## this works OK with directed graphs
  } else {
    g.com <- igraph::cluster_fast_greedy(g) ## this can crash with some networks
  }
  
  # community metrics
  g.com.length <- length(g.com)
  g.com.membership <- igraph::membership(g.com)
  
  # save membership to original graph
  # this is based on vertex order
  igraph::V(g)$cluster <- g.com.membership
  
  # colors for communities: choose color palette based on number of communities
  if (g.com.length <= 9 & g.com.length > 2) {
    cols <- brewer.pal(n = g.com.length, name = 'Set1') 
  } else if (g.com.length < 3) {
    cols <- brewer.pal(n = 3, name = 'Set1')
  } else if (g.com.length > 9) {
    cols <- colorRampPalette(brewer.pal(n = 9, name = 'Set1'))(g.com.length)
  }
  
  # set colors based on community membership
  cols.alpha <- alpha(cols, vertex.alpha)
  igraph::V(g)$color <- cols.alpha[g.com.membership]
  
  # get an index to edges associated with series specified in 's'
  el <- igraph::get.edgelist(g)
  idx <- unique(c(which(el[, 1] == s), which(el[, 2] == s)))
  
  # set default edge color
  igraph::E(g)$color <- alpha(edge.col, edge.transparency)
  # set edge colors based on optional series name to highlight
  igraph::E(g)$color[idx] <- alpha(edge.highlight.col, edge.transparency)
  
  # previous coloring of edges based on in/out community
  # igraph::E(g)$color <- alpha(c('grey','black')[igraph::crossing(g.com, g)+1], edge.transparency)
  
  # generate vector of fonts, highlighting main soil
  font.vect <- rep(1, times = length(g.com.membership))
  font.vect[which(names(g.com.membership) == s)] <- 2
  
  if (plot.style == 'network') {
    # note: seed being reset behind the scenes might be unexpected for users
    set.seed(1010101) # consistent output
    plot(
      g,
      layout = g.layout,
      vertex.label.color = vertex.label.color,
      vertex.label.font = font.vect,
      ...
    )
    
    # invisibly return the graph
    return(invisible(g))
  }  
  
  if (plot.style == 'dendrogram') {
    igraph::plot_dendrogram(
      g.com,
      mode = 'phylo',
      label.offset = 0.1,
      font = font.vect,
      palette = cols,
      ...
    )
    
    # invisibly return the community structure
    return(invisible(g.com))
  }
  
  # other wise, plot nothing and return graph
  return(g)
}

Try the sharpshootR package in your browser

Any scripts or data that you put into this service are public.

sharpshootR documentation built on Oct. 23, 2024, 1:06 a.m.