store_sqlite | R Documentation |
All logs will be written in the same file.
store_sqlite(path)
path |
Path to the SQLite file or a directory where to create one. |
A list that can be used in track_usage()
.
if (interactive()) { library(shiny) library(shinylogs) # temp directory for writing logs tmp <- tempdir() # when app stop, # navigate to the directory containing logs onStop(function() { browseURL(url = tmp) }) # Classir Iris clustering with Shiny ui <- fluidPage( headerPanel("Iris k-means clustering"), sidebarLayout( sidebarPanel( selectInput( inputId = "xcol", label = "X Variable", choices = names(iris) ), selectInput( inputId = "ycol", label = "Y Variable", choices = names(iris), selected = names(iris)[[2]] ), numericInput( inputId = "clusters", label = "Cluster count", value = 3, min = 1, max = 9 ) ), mainPanel( plotOutput("plot1") ) ) ) server <- function(input, output, session) { # Store RDS with logs in the temp dir track_usage( storage_mode = store_sqlite(path = tmp) ) # classic server logic selectedData <- reactive({ iris[, c(input$xcol, input$ycol)] }) clusters <- reactive({ kmeans(selectedData(), input$clusters) }) output$plot1 <- renderPlot({ palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999")) par(mar = c(5.1, 4.1, 0, 1)) plot(selectedData(), col = clusters()$cluster, pch = 20, cex = 3) points(clusters()$centers, pch = 4, cex = 4, lwd = 4) }) } shinyApp(ui, server) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.