View source: R/pred_functions.R
predict.shrinkGPR | R Documentation |
predict.shrinkGPR
generates posterior predictive samples from a fitted shrinkGPR
model at specified covariates.
## S3 method for class 'shrinkGPR'
predict(object, newdata, nsamp = 100, ...)
object |
A |
newdata |
Optional data frame containing the covariates for the prediction points. If missing, the training data is used. |
nsamp |
Positive integer specifying the number of posterior samples to generate. Default is 100. |
... |
Currently ignored. |
This function generates predictions by sampling from the posterior predictive distribution. If the mean equation is included in the model, the corresponding covariates are incorporated.
A matrix containing posterior predictive samples for each covariate combination in newdata
.
if (torch::torch_is_installed()) {
# Simulate data
set.seed(123)
torch::torch_manual_seed(123)
n <- 100
x <- matrix(runif(n * 2), n, 2)
y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
# Fit GPR model
res <- shrinkGPR(y ~ x1 + x2, data = data)
# Example usage for in-sample prediction
preds <- predict(res)
# Example usage for out-of-sample prediction
newdata <- data.frame(x1 = runif(10), x2 = runif(10))
preds <- predict(res, newdata = newdata)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.