Nothing
#' Evaluate Predictive Densities
#'
#' \code{eval_pred_dens} evaluates the predictive density for a set of points based on a fitted \code{shrinkGPR} model.
#'
#' @param x Numeric vector of points for which the predictive density is to be evaluated.
#' @param mod A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param data_test Data frame with one row containing the covariates for the test set.
#' Variables in \code{data_test} must match those used in model fitting.
#' @param nsamp Positive integer specifying the number of posterior samples to use for the evaluation. Default is 100.
#' @param log Logical; if \code{TRUE}, returns the log predictive density. Default is \code{FALSE}.
#' @return A numeric vector containing the predictive densities (or log predictive densities) for the points in \code{x}.
#' @details
#' This function computes predictive densities by marginalizing over posterior samples drawn from the fitted model. If the mean equation is included in the model, the corresponding covariates are incorporated.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Create point at which to evaluate predictive density
#' data_test <- data.frame(x1 = 0.8, x2 = 0.5)
#' eval_points <- c(-1.2, -1, 0)
#'
#' eval_pred_dens(eval_points, res, data_test)
#'
#' # Is vectorized, can also be used in functions like curve
#' curve(eval_pred_dens(x, res, data_test), from = -1.5, to = -0.5)
#' abline(v = sin(2 * pi * 0.8), col = "red")
#' }
#' }
#' @export
eval_pred_dens <- function(x, mod, data_test, nsamp = 100, log = FALSE){
# Input checking for eval_pred_dens --------------------------------------
# Check that x is numeric
if (!is.numeric(x)) {
stop("The argument 'x' must be a numeric vector.")
}
# Check that mod is a shrinkGPR object
if (!class(mod) %in% c("shrinkGPR", "shrinkTPR")) {
stop("The argument 'mod' must be an object of class 'shrinkGPR' or 'shrinkTPR'.")
}
# Check that data_test is a data frame with one row
if (!is.data.frame(data_test) || nrow(data_test) != 1) {
stop("The argument 'data_test' must be a data frame with exactly one row.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
# Check that log is a logical value
if (!is.logical(log) || length(log) != 1) {
stop("The argument 'log' must be a single logical value.")
}
device <- attr(mod, "device")
terms <- delete.response(mod$model_internals$terms)
m <- model.frame(terms, data = data_test, xlev = mod$model_internals$xlevels)
x_test <- torch_tensor(model.matrix(terms, m), device = device)
if (mod$model_internals$x_mean) {
terms_mean <- delete.response(mod$model_internals$terms_mean)
m_mean <- model.frame(terms_mean, data = data_test, xlev = mod$model_internals$xlevels_mean)
x_test_mean <- torch_tensor(model.matrix(terms_mean, m_mean), device = device)
} else {
x_test_mean <- NULL
}
x_tens <- torch_tensor(x, device = device)
res_tens <- mod$model$eval_pred_dens(x_tens, x_test, nsamp, x_test_mean, log)
return(as.numeric(res_tens))
}
#' Log Predictive Density Score
#'
#' \code{LPDS} calculates the log predictive density score for a fitted \code{shrinkGPR} model using a test dataset.
#'
#' @param mod A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param data_test Data frame with one row containing the covariates for the test set.
#' Variables in \code{data_test} must match those used in model fitting.
#' @param nsamp Positive integer specifying the number of posterior samples to use for the evaluation. Default is 100.
#' @return A numeric value representing the log predictive density score for the test dataset.
#' @details
#' The log predictive density score is a measure of model fit that evaluates how well the model predicts unseen data.
#' It is computed as the log of the marginal predictive density of the observed responses.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Calculate true y value and calculate LPDS at specific point
#' x1_new <- 0.8
#' x2_new <- 0.5
#' y_true <- sin(2 * pi * x1_new)
#' data_test <- data.frame(y = y_true, x1 = x1_new, x2 = x2_new)
#' LPDS(res, data_test)
#' }
#' }
#' @export
LPDS <- function(mod, data_test, nsamp = 100) {
# Input checking for LPDS -------------------------------------------------
# Check that mod is a shrinkGPR object
if (!class(mod) %in% c("shrinkGPR", "shrinkTPR")) {
stop("The argument 'mod' must be an object of class 'shrinkGPR' or 'shrinkTPR'.")
}
# Check that data_test is a data frame with one row
if (!is.data.frame(data_test) || nrow(data_test) != 1) {
stop("The argument 'data_test' must be a data frame with exactly one row.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
# Create Vector y
terms <- mod$model_internals$terms
m <- model.frame(terms, data = data_test, xlev = mod$model_internals$xlevels)
y <- model.response(m, "numeric")
eval_pred_dens(y, mod, data_test, nsamp, log = TRUE)
}
#' Calculate Predictive Moments
#'
#' \code{calc_pred_moments} calculates the predictive means and variances for a fitted \code{shrinkGPR} model at new data points.
#'
#' @param object A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param newdata \emph{Optional} data frame containing the covariates for the new data points. If missing, the training data is used.
#' @param nsamp Positive integer specifying the number of posterior samples to use for the calculation. Default is 100.
#' @return A list with two elements:
#' \itemize{
#' \item \code{means}: A matrix of predictive means for each new data point, with the rows being the samples and the columns the data points.
#' \item \code{vars}: An array of covariance matrices, with the first dimension corresponding to the samples and second and third dimensions to the data points.
#' }
#' @details
#' This function computes predictive moments by marginalizing over posterior samples from the fitted model. If the mean equation is included in the model, the corresponding covariates are used.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Calculate predictive moments
#' momes <- calc_pred_moments(res, nsamp = 100)
#' }
#' }
#' @export
calc_pred_moments <- function(object, newdata, nsamp = 100) {
# Input checking for calc_pred_moments ------------------------------------
# Check that object is a shrinkGPR object
if (!class(object) %in% c("shrinkGPR", "shrinkTPR")) {
stop("The argument 'object' must be an object of class 'shrinkGPR' or 'shrinkTPR'.")
}
# Check that newdata, if provided, is a data frame
if (!missing(newdata) && !is.data.frame(newdata)) {
stop("The argument 'newdata', if provided, must be a data frame.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
if (missing(newdata)) {
newdata <- object$model_internals$data
}
device <- attr(object, "device")
terms <- delete.response(object$model_internals$terms)
m <- model.frame(terms, data = newdata, xlev = object$model_internals$xlevels)
x_tens <- torch_tensor(model.matrix(terms, m), device = device)
if (object$model_internals$x_mean) {
terms_mean <- delete.response(object$model_internals$terms_mean)
m_mean <- model.frame(terms_mean, data = newdata, xlev = object$model_internals$xlevels_mean)
x_tens_mean <- torch_tensor(model.matrix(terms_mean, m_mean), device = device)
} else {
x_tens_mean <- NULL
}
res_tens <- object$model$calc_pred_moments(x_tens, nsamp, x_tens_mean)
return(list(means = as.matrix(res_tens[[1]]),
vars = as.array(res_tens[[2]])))
}
#' Generate Predictions
#'
#' \code{predict.shrinkGPR} generates posterior predictive samples from a fitted \code{shrinkGPR} model at specified covariates.
#'
#' @param object A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param newdata \emph{Optional} data frame containing the covariates for the prediction points. If missing, the training data is used.
#' @param nsamp Positive integer specifying the number of posterior samples to generate. Default is 100.
#' @param ... Currently ignored.
#' @return A matrix containing posterior predictive samples for each covariate combination in \code{newdata}.
#' @details
#' This function generates predictions by sampling from the posterior predictive distribution. If the mean equation is included in the model, the corresponding covariates are incorporated.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#' # Example usage for in-sample prediction
#' preds <- predict(res)
#'
#' # Example usage for out-of-sample prediction
#' newdata <- data.frame(x1 = runif(10), x2 = runif(10))
#' preds <- predict(res, newdata = newdata)
#' }
#' }
#' @export
predict.shrinkGPR <- function(object, newdata, nsamp = 100, ...) {
# Input checking for predict.shrinkGPR ------------------------------------
# Check that mod is a shrinkGPR object
if (!class(object) %in% c("shrinkGPR", "shrinkTPR")) {
stop("The argument 'object' must be an object of class 'shrinkGPR' or 'shrinkTPR'.")
}
# Check that newdata, if provided, is a data frame
if (!missing(newdata) && !is.data.frame(newdata)) {
stop("The argument 'newdata', if provided, must be a data frame.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
if (missing(newdata)) {
newdata <- object$model_internals$data
}
device <- attr(object, "device")
terms <- delete.response(object$model_internals$terms)
m <- model.frame(terms, data = newdata, xlev = object$model_internals$xlevels)
x_tens <- torch_tensor(model.matrix(terms, m), device = device)
if (object$model_internals$x_mean) {
terms_mean <- delete.response(object$model_internals$terms_mean)
m_mean <- model.frame(terms_mean, data = newdata, xlev = object$model_internals$xlevels_mean)
x_tens_mean <- torch_tensor(model.matrix(terms_mean, m_mean), device = device)
} else {
x_tens_mean <- NULL
}
res_tens <- object$model$predict(x_tens, nsamp, x_tens_mean)
return(as.matrix(res_tens))
}
#' Generate Predictions
#'
#' \code{predict.shrinkTPR} generates posterior predictive samples from a fitted \code{shrinkGPR} model at specified covariates.
#'
#' @param object A \code{shrinkTPR} object representing the fitted Gaussian process regression model.
#' @param newdata \emph{Optional} data frame containing the covariates for the prediction points. If missing, the training data is used.
#' @param nsamp Positive integer specifying the number of posterior samples to generate. Default is 100.
#' @param ... Currently ignored.
#' @return A matrix containing posterior predictive samples for each covariate combination in \code{newdata}.
#' @details
#' This function generates predictions by sampling from the posterior predictive distribution. If the mean equation is included in the model, the corresponding covariates are incorporated.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#' # Example usage for in-sample prediction
#' preds <- predict(res)
#'
#' # Example usage for out-of-sample prediction
#' newdata <- data.frame(x1 = runif(10), x2 = runif(10))
#' preds <- predict(res, newdata = newdata)
#' }
#' }
#' @export
predict.shrinkTPR <- function(object, newdata, nsamp = 100, ...) {
predict.shrinkGPR(object, newdata, nsamp, ...)
}
#' Generate Posterior Samples
#'
#' \code{gen_posterior_samples} generates posterior samples of the model parameters from a fitted \code{shrinkGPR} or \code{shrinkTPR} model.
#'
#' @param mod A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param nsamp Positive integer specifying the number of posterior samples to generate. Default is 1000.
#' @return A list containing posterior samples of the model parameters:
#' \itemize{
#' \item \code{thetas}: A matrix of posterior samples for the inverse lengthscale parameters.
#' \item \code{sigma2}: A matrix of posterior samples for the noise variance.
#' \item \code{lambda}: A matrix of posterior samples for the global shrinkage parameter.
#' \item \code{betas} (optional): A matrix of posterior samples for the mean equation parameters (if included in the model).
#' \item \code{lambda_mean} (optional): A matrix of posterior samples for the mean equation's global shrinkage parameter (if included in the model).
#' }
#' @details
#' This function draws posterior samples from the latent space and transforms them into the parameter space of the model. These samples can be used for posterior inference or further analysis.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Generate posterior samples
#' samps <- gen_posterior_samples(res, nsamp = 1000)
#'
#' # Plot the posterior samples
#' boxplot(samps$thetas)
#' }
#' }
#' @export
gen_posterior_samples <- function(mod, nsamp = 1000) {
# Input checking for gen_posterior_samples -------------------------------
# Check that mod is a shrinkGPR object
if (!class(mod) %in% c("shrinkGPR", "shrinkTPR")) {
stop("The argument 'mod' must be an object of class 'shrinkGPR' or 'shrinkTPR'.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
z <- mod$model$gen_batch(nsamp)
zk <- mod$model(z)[[1]]
# Split into list containing groups of parameters
# Convention:
# First d_cov components are the theta parameters
# Next component is the sigma parameter
# Next component is the lambda parameter
# Next d_mean components are the mean parameters
# Last component is the lambda parameter for the mean
d_cov <- mod$model_internals$d_cov
res <- list(thetas = as.matrix(zk[, 1:d_cov]),
sigma2 = as.matrix(zk[, d_cov + 1]),
lambda = as.matrix(zk[, d_cov + 2]))
colnames(res$thetas) <- paste0("theta_", attr(mod$model_internals$terms, "term.labels"))
if (mod$model_internals$x_mean) {
d_mean <- mod$model_internals$d_mean
res$betas <- as.matrix(zk[, (d_cov + 3):(d_cov + 2 + d_mean)])
res$lambda_mean <- as.matrix(zk[, d_cov + 2 + d_mean + 1])
colnames(res$betas) <- paste0("beta_", attr(mod$model_internals$terms_mean, "term.labels"))
}
if (inherits(mod, "shrinkTPR")) {
res$nu <- as.matrix(zk[, -1]) + 2
}
return(res)
}
#' Generate Marginal Samples of Predictive Distribution
#'
#' \code{gen_marginal_samples()} generates model predictions over a grid of values for one or two specified covariates,
#' while filling in the remaining covariates either by drawing from the training data (if \code{fixed_x} is not provided)
#' or by using a fixed values for the remaining covariates (if \code{fixed_x} is provided). The result is a set of conditional
#' predictions that can be used to visualize the marginal effect of the selected covariates under varying input configurations.
#'
#' @param mod A \code{shrinkGPR} or \code{shrinkTPR} object representing the fitted Gaussian/t process regression model.
#' @param to_eval A character vector specifying the names of the covariates to evaluate. Can be one or two variables.
#' @param nsamp Positive integer specifying the number of posterior samples to generate. Default is 200.
#' @param fixed_x \emph{optional} data frame specifying a fixed covariate configuration. If provided, this configuration is used for
#' all nonswept covariates. If omitted, covariates are sampled from the training data.
#' @param n_eval_points Positive integer specifying the number of evaluation points along each axis. If missing, defaults to 100
#' for 1D and 30 for 2D evaluations.
#' @param eval_range \emph{optional} numeric vector (1D) or list of two numeric vectors (2D) specifying the range over which to evaluate
#' the covariates in \code{to_eval}. If omitted, the range is set to the range of the swept covariate(s) in the training data.
#' @param display_progress logical value indicating whether to display progress bars and messages during training. The default is \code{TRUE}.
#' @return A list containing posterior predictive summaries over the evaluation grid:
#' \itemize{
#' \item \code{mean_pred}: A matrix (1D case) or array (2D case) of predicted means for each evaluation point and posterior sample.
#' \item \code{grid}: The evaluation grid used to generate predictions. A numeric vector (1D) or a named list of two vectors (\code{grid1}, \code{grid2}) for 2D evaluations.
#' }
#' @details
#' This function generates conditional predictive surfaces by evaluating the fitted model across a grid of values for one or two selected covariates.
#' For each of the \code{nsamp} draws, the remaining covariates are either held fixed (if \code{fixed_x} is provided) or filled in by sampling a single row from the training data.
#' The selected covariates in \code{to_eval} are then varied across a regular grid defined by \code{n_eval_points} and \code{eval_range}, and model predictions are computed using \code{\link{calc_pred_moments}}.
#'
#' The resulting samples represent conditional predictions across different covariate contexts, and can be used to visualize marginal effects, interaction surfaces, or predictive uncertainty.
#'
#' Note that computational and memory requirements increase rapidly with grid size. In particular, for two-dimensional evaluations, the
#' kernel matrix scales quadratically with the number of evaluation points per axis. Large values of \code{n_eval_points} may lead to high
#' memory usage during prediction, especially when using a GPU. If memory constraints arise, consider reducing \code{n_eval_points}.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Generate posterior samples
#' samps <- gen_posterior_samples(res, nsamp = 1000)
#'
#' # Plot the posterior samples
#' boxplot(samps$thetas)
#' }
#' }
#' @export
gen_marginal_samples <- function(mod, to_eval, nsamp = 200, fixed_x, n_eval_points, eval_range, display_progress = TRUE) {
# Input checking ----------------------------------------------------------
# Check that mod is a supported model object
if (!inherits(mod, c("shrinkGPR", "shrinkTPR"))) {
stop("The argument 'mod' must be a 'shrinkGPR' or 'shrinkTPR' object.")
}
# Check that to_eval is a character vector of length 1 or 2
if (!is.character(to_eval) || !(length(to_eval) %in% c(1, 2))) {
stop("The argument 'to_eval' must be a character vector of length 1 or 2.")
}
# Check that to_eval are valid covariate names in the model
valid_covariates <- attr(mod$model_internals$terms, "term.labels")
if (!all(to_eval %in% valid_covariates)) {
stop("The covariates specified in 'to_eval' must be names present in the colnames of the model's data.")
}
# Check nsamp is a positive integer
if (int_input_bad(nsamp)) {
stop("The argument 'nsamp' must be a positive integer.")
}
# Check display_progress is a logical scalar
if (bool_input_bad(display_progress)) {
stop("The argument 'display_progress' must be a single logical value.")
}
# Check fixed_x (if provided) is a data frame
if (!missing(fixed_x) && !is.data.frame(fixed_x)) {
stop("The argument 'fixed_x', if provided, must be a data frame.")
}
# Check n_eval_points (if provided) is a positive integer
if (!missing(n_eval_points) && int_input_bad(n_eval_points)) {
stop("The argument 'n_eval_points', if provided, must be a positive integer.")
}
# Check eval_range (if provided)
if (!missing(eval_range)) {
if (length(to_eval) == 1) {
if (!is.numeric(eval_range) || length(eval_range) != 2 || any(is.na(eval_range))) {
stop("For 1D evaluation, 'eval_range' must be a numeric vector of length 2.")
}
} else if (length(to_eval) == 2) {
if (!is.list(eval_range) || length(eval_range) != 2 ||
!all(sapply(eval_range, function(x) is.numeric(x) && length(x) == 2 && all(!is.na(x))))) {
stop("For 2D evaluation, 'eval_range' must be a list of two numeric vectors, each of length 2.")
}
}
}
# If missing n_eval_points, set defaults based on to_eval length
# 100 for 1D grid, 30 for 2D grid, as not to overwhelm memory
if (missing(n_eval_points)) {
if (length(to_eval) == 1) {
n_eval_points <- 100
} else if (length(to_eval) == 2) {
n_eval_points <- 30
}
}
# Set default eval_range to range of swept covariates, if user did not specify otherwise
if (missing(eval_range)) {
if (length(to_eval) == 1) {
eval_range <- range(mod$model_internals$data[[to_eval]], na.rm = TRUE)
} else if (length(to_eval) == 2) {
eval_range <- list(
eval_range1 = range(mod$model_internals$data[[to_eval[1]]], na.rm = TRUE),
eval_range2 = range(mod$model_internals$data[[to_eval[2]]], na.rm = TRUE)
)
}
}
if (length(to_eval) == 1) {
# 1D case
# Generate grid of points to evaluate as well as storage object for samples
grid <- seq(eval_range[1], eval_range[2], length.out = n_eval_points)
samples <- matrix(NA, nrow = nsamp, ncol = n_eval_points)
# Set up progress bar
if (display_progress) {
pb <- progress_bar$new(total = nsamp, format = "[:bar] :percent :eta",
clear = FALSE, width = 100)
}
# Loop over number of samples
for (i in 1:nsamp) {
if (missing(fixed_x)) {
# Create synthetic data by sampling from the model's data
index <- sample(1:nrow(mod$model_internals$data), 1)
curr_data <- mod$model_internals$data[index, ][rep(1, n_eval_points), ]
} else {
# Use fixed_x to create synthetic data
curr_data <- fixed_x
}
# Replicate single row
curr_data <- curr_data[rep(1, n_eval_points), ]
# Replace column of interest with grid values
curr_data[, to_eval] <- grid
samples[i, ] <- calc_pred_moments(mod, newdata = curr_data, nsamp = 1)[[1]]
if (display_progress) {
pb$tick()
}
}
res <- list(mean_pred = samples, grid = grid)
attr(res, "class") <- "shrinkGPR_marg_samples_1D"
attr(res, "to_eval") <- to_eval
attr(res, "response") <- as.character(mod$model_internals$terms[[2]])
return(res)
} else if (length(to_eval) == 2) {
# 2D case
# Create grid as well as container to hold samples
grid1 <- seq(eval_range[[1]][1], eval_range[[1]][2], length.out = n_eval_points)
grid2 <- seq(eval_range[[2]][1], eval_range[[2]][2], length.out = n_eval_points)
grid_tot <- expand.grid(grid1, grid2)
samples <- array(NA, dim = c(nsamp, n_eval_points, n_eval_points))
if (display_progress) {
pb <- progress_bar$new(total = nsamp, format = "[:bar] :percent :eta",
clear = FALSE, width = 100)
}
for (i in 1:nsamp) {
if (missing(fixed_x)) {
# Create synthetic data by sampling from the model's data
index <- sample(1:nrow(mod$model_internals$data), 1)
curr_data <- mod$model_internals$data[index, ]
} else {
# Use fixed_x to create synthetic data
curr_data <- fixed_x
}
# Replicate single row
curr_data <- curr_data[rep(1, n_eval_points^2), ]
# Replace columns of interest with grid values
curr_data[, to_eval[1]] <- grid_tot[, 1]
curr_data[, to_eval[2]] <- grid_tot[, 2]
pred_moments <- calc_pred_moments(mod, newdata = curr_data, nsamp = 1)[[1]]
samples[i, , ] <- matrix(pred_moments, nrow = n_eval_points, ncol = n_eval_points)
if (display_progress) {
pb$tick()
}
}
res <- list(mean_pred = samples, grid = list(grid1 = grid1, grid2 = grid2))
attr(res, "class") <- "shrinkGPR_marg_samples_2D"
attr(res, "to_eval") <- to_eval
attr(res, "response") <- as.character(mod$model_internals$terms[[2]])
return(res)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.