Nothing
#' Evaluate Predictive Densities
#'
#' \code{eval_pred_dens} evaluates the predictive density for a set of points based on a fitted \code{shrinkGPR} model.
#'
#' @param x Numeric vector of points for which the predictive density is to be evaluated.
#' @param mod A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param data_test Data frame with one row containing the covariates for the test set.
#' Variables in \code{data_test} must match those used in model fitting.
#' @param nsamp Positive integer specifying the number of posterior samples to use for the evaluation. Default is 100.
#' @param log Logical; if \code{TRUE}, returns the log predictive density. Default is \code{FALSE}.
#' @return A numeric vector containing the predictive densities (or log predictive densities) for the points in \code{x}.
#' @details
#' This function computes predictive densities by marginalizing over posterior samples drawn from the fitted model. If the mean equation is included in the model, the corresponding covariates are incorporated.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Create point at which to evaluate predictive density
#' data_test <- data.frame(x1 = 0.8, x2 = 0.5)
#' eval_points <- c(-1.2, -1, 0)
#'
#' eval_pred_dens(eval_points, res, data_test)
#'
#' # Is vectorized, can also be used in functions like curve
#' curve(eval_pred_dens(x, res, data_test), from = -1.5, to = -0.5)
#' abline(v = sin(2 * pi * 0.8), col = "red")
#' }
#' }
#' @export
eval_pred_dens <- function(x, mod, data_test, nsamp = 100, log = FALSE){
# Input checking for eval_pred_dens --------------------------------------
# Check that x is numeric
if (!is.numeric(x)) {
stop("The argument 'x' must be a numeric vector.")
}
# Check that mod is a shrinkGPR object
if (!inherits(mod, "shrinkGPR")) {
stop("The argument 'mod' must be an object of class 'shrinkGPR'.")
}
# Check that data_test is a data frame with one row
if (!is.data.frame(data_test) || nrow(data_test) != 1) {
stop("The argument 'data_test' must be a data frame with exactly one row.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
# Check that log is a logical value
if (!is.logical(log) || length(log) != 1) {
stop("The argument 'log' must be a single logical value.")
}
device <- attr(mod, "device")
terms <- delete.response(mod$model_internals$terms)
m <- model.frame(terms, data = data_test, xlev = mod$model_internals$xlevels)
x_test <- torch_tensor(model.matrix(terms, m), device = device)
if (mod$model_internals$x_mean) {
terms_mean <- delete.response(mod$model_internals$terms_mean)
m_mean <- model.frame(terms_mean, data = data_test, xlev = mod$model_internals$xlevels_mean)
x_test_mean <- torch_tensor(model.matrix(terms_mean, m_mean), device = device)
} else {
x_test_mean <- NULL
}
x_tens <- torch_tensor(x, device = device)
res_tens <- mod$model$eval_pred_dens(x_tens, x_test, nsamp, x_test_mean, log)
return(as.numeric(res_tens))
}
#' Log Predictive Density Score
#'
#' \code{LPDS} calculates the log predictive density score for a fitted \code{shrinkGPR} model using a test dataset.
#'
#' @param mod A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param data_test Data frame with one row containing the covariates for the test set.
#' Variables in \code{data_test} must match those used in model fitting.
#' @param nsamp Positive integer specifying the number of posterior samples to use for the evaluation. Default is 100.
#' @return A numeric value representing the log predictive density score for the test dataset.
#' @details
#' The log predictive density score is a measure of model fit that evaluates how well the model predicts unseen data.
#' It is computed as the log of the marginal predictive density of the observed responses.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Calculate true y value and calculate LPDS at specific point
#' x1_new <- 0.8
#' x2_new <- 0.5
#' y_true <- sin(2 * pi * x1_new)
#' data_test <- data.frame(y = y_true, x1 = x1_new, x2 = x2_new)
#' LPDS(res, data_test)
#' }
#' }
#' @export
LPDS <- function(mod, data_test, nsamp = 100) {
# Input checking for LPDS -------------------------------------------------
# Check that mod is a shrinkGPR object
if (!inherits(mod, "shrinkGPR")) {
stop("The argument 'mod' must be an object of class 'shrinkGPR'.")
}
# Check that data_test is a data frame with one row
if (!is.data.frame(data_test) || nrow(data_test) != 1) {
stop("The argument 'data_test' must be a data frame with exactly one row.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
# Create Vector y
terms <- mod$model_internals$terms
m <- model.frame(terms, data = data_test, xlev = mod$model_internals$xlevels)
y <- model.response(m, "numeric")
eval_pred_dens(y, mod, data_test, nsamp, log = TRUE)
}
#' Calculate Predictive Moments
#'
#' \code{calc_pred_moments} calculates the predictive means and variances for a fitted \code{shrinkGPR} model at new data points.
#'
#' @param object A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param newdata \emph{Optional} data frame containing the covariates for the new data points. If missing, the training data is used.
#' @param nsamp Positive integer specifying the number of posterior samples to use for the calculation. Default is 100.
#' @return A list with two elements:
#' \itemize{
#' \item \code{means}: A matrix of predictive means for each new data point, with the rows being the samples and the columns the data points.
#' \item \code{vars}: An array of covariance matrices, with the first dimension corresponding to the samples and second and third dimensions to the data points.
#' }
#' @details
#' This function computes predictive moments by marginalizing over posterior samples from the fitted model. If the mean equation is included in the model, the corresponding covariates are used.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Calculate predictive moments
#' momes <- calc_pred_moments(res, nsamp = 100)
#' }
#' }
#' @export
calc_pred_moments <- function(object, newdata, nsamp = 100) {
# Input checking for calc_pred_moments ------------------------------------
# Check that object is a shrinkGPR object
if (!inherits(object, "shrinkGPR")) {
stop("The argument 'object' must be an object of class 'shrinkGPR'.")
}
# Check that newdata, if provided, is a data frame
if (!missing(newdata) && !is.data.frame(newdata)) {
stop("The argument 'newdata', if provided, must be a data frame.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
if (missing(newdata)) {
newdata <- object$model_internals$data
}
device <- attr(object, "device")
terms <- delete.response(object$model_internals$terms)
m <- model.frame(terms, data = newdata, xlev = object$model_internals$xlevels)
x_tens <- torch_tensor(model.matrix(terms, m), device = device)
if (object$model_internals$x_mean) {
terms_mean <- delete.response(object$model_internals$terms_mean)
m_mean <- model.frame(terms_mean, data = newdata, xlev = object$model_internals$xlevels_mean)
x_tens_mean <- torch_tensor(model.matrix(terms_mean, m_mean), device = device)
} else {
x_tens_mean <- NULL
}
res_tens <- object$model$calc_pred_moments(x_tens, nsamp, x_tens_mean)
return(list(means = as.matrix(res_tens[[1]]),
vars = as.array(res_tens[[2]])))
}
#' Generate Predictions
#'
#' \code{predict.shrinkGPR} generates posterior predictive samples from a fitted \code{shrinkGPR} model at specified covariates.
#'
#' @param object A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param newdata \emph{Optional} data frame containing the covariates for the prediction points. If missing, the training data is used.
#' @param nsamp Positive integer specifying the number of posterior samples to generate. Default is 100.
#' @param ... Currently ignored.
#' @return A matrix containing posterior predictive samples for each covariate combination in \code{newdata}.
#' @details
#' This function generates predictions by sampling from the posterior predictive distribution. If the mean equation is included in the model, the corresponding covariates are incorporated.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#' # Example usage for in-sample prediction
#' preds <- predict(res)
#'
#' # Example usage for out-of-sample prediction
#' newdata <- data.frame(x1 = runif(10), x2 = runif(10))
#' preds <- predict(res, newdata = newdata)
#' }
#' }
#' @export
predict.shrinkGPR <- function(object, newdata, nsamp = 100, ...) {
# Input checking for predict.shrinkGPR ------------------------------------
# Check that object is a shrinkGPR object
if (!inherits(object, "shrinkGPR")) {
stop("The argument 'object' must be an object of class 'shrinkGPR'.")
}
# Check that newdata, if provided, is a data frame
if (!missing(newdata) && !is.data.frame(newdata)) {
stop("The argument 'newdata', if provided, must be a data frame.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
if (missing(newdata)) {
newdata <- object$model_internals$data
}
device <- attr(object, "device")
terms <- delete.response(object$model_internals$terms)
m <- model.frame(terms, data = newdata, xlev = object$model_internals$xlevels)
x_tens <- torch_tensor(model.matrix(terms, m), device = device)
if (object$model_internals$x_mean) {
terms_mean <- delete.response(object$model_internals$terms_mean)
m_mean <- model.frame(terms_mean, data = newdata, xlev = object$model_internals$xlevels_mean)
x_tens_mean <- torch_tensor(model.matrix(terms_mean, m_mean), device = device)
} else {
x_tens_mean <- NULL
}
res_tens <- object$model$predict(x_tens, nsamp, x_tens_mean)
return(as.matrix(res_tens))
}
#' Generate Posterior Samples
#'
#' \code{gen_posterior_samples} generates posterior samples of the model parameters from a fitted \code{shrinkGPR} model.
#'
#' @param mod A \code{shrinkGPR} object representing the fitted Gaussian process regression model.
#' @param nsamp Positive integer specifying the number of posterior samples to generate. Default is 1000.
#' @return A list containing posterior samples of the model parameters:
#' \itemize{
#' \item \code{thetas}: A matrix of posterior samples for the inverse lengthscale parameters.
#' \item \code{sigma2}: A matrix of posterior samples for the noise variance.
#' \item \code{lambda}: A matrix of posterior samples for the global shrinkage parameter.
#' \item \code{betas} (optional): A matrix of posterior samples for the mean equation parameters (if included in the model).
#' \item \code{lambda_mean} (optional): A matrix of posterior samples for the mean equation's global shrinkage parameter (if included in the model).
#' }
#' @details
#' This function draws posterior samples from the latent space and transforms them into the parameter space of the model. These samples can be used for posterior inference or further analysis.
#' @examples
#' \donttest{
#' if (torch::torch_is_installed()) {
#' # Simulate data
#' set.seed(123)
#' torch::torch_manual_seed(123)
#' n <- 100
#' x <- matrix(runif(n * 2), n, 2)
#' y <- sin(2 * pi * x[, 1]) + rnorm(n, sd = 0.1)
#' data <- data.frame(y = y, x1 = x[, 1], x2 = x[, 2])
#'
#' # Fit GPR model
#' res <- shrinkGPR(y ~ x1 + x2, data = data)
#'
#' # Generate posterior samples
#' samps <- gen_posterior_samples(res, nsamp = 1000)
#'
#' # Plot the posterior samples
#' boxplot(samps$thetas)
#' }
#' }
#' @export
gen_posterior_samples <- function(mod, nsamp = 1000) {
# Input checking for gen_posterior_samples -------------------------------
# Check that mod is a shrinkGPR object
if (!inherits(mod, "shrinkGPR")) {
stop("The argument 'mod' must be an object of class 'shrinkGPR'.")
}
# Check that nsamp is a positive integer
if (!is.numeric(nsamp) || nsamp <= 0 || nsamp %% 1 != 0) {
stop("The argument 'nsamp' must be a positive integer.")
}
z <- mod$model$gen_batch(nsamp)
zk <- mod$model(z)[[1]]
# Split into list containing groups of parameters
# Convention:
# First d_cov components are the theta parameters
# Next component is the sigma parameter
# Next component is the lambda parameter
# Next d_mean components are the mean parameters
# Last component is the lambda parameter for the mean
d_cov <- mod$model_internals$d_cov
res <- list(thetas = as.matrix(zk[, 1:d_cov]),
sigma2 = as.matrix(zk[, d_cov + 1]),
lambda = as.matrix(zk[, d_cov + 2]))
if (mod$model_internals$x_mean) {
d_mean <- mod$model_internals$d_mean
res$betas <- as.matrix(zk[, (d_cov + 3):(d_cov + 2 + d_mean)])
res$lambda_mean <- as.matrix(zk[, -1])
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.