Description Usage Arguments Value Examples
View source: R/sigmoidalFitFunctions.R
Calculates intesities for given time points (x) by using sigmoidal fit model and parameters (maximum, slopeParam, and midpoint).
1 | sigmoidalFitFormula(x, maximum, slopeParam, midPoint)
|
x |
the "time" (time) column of the dataframe. |
maximum |
the maximum intensity that the sigmoidal function can reach while time approaches infinity. |
slopeParam |
the slope parameter of the sigmoidal function at the steppest point. |
midPoint |
the x axis value of the steppest point in the function. |
Returns the predicted intensities for given time points with the given sigmoidal fit parameters.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | time <- seq(3, 24, 0.5)
#simulate intensity data and add noise
noise_parameter <- 0.1
intensity_noise <- stats::runif(n = length(time), min = 0, max = 1) * noise_parameter
intensity <- sigmoidalFitFormula(time, maximum = 4, slopeParam = 1, midPoint = 8)
intensity <- intensity + intensity_noise
dataInput <- data.frame(intensity = intensity, time = time)
normalizedInput <- normalizeData(dataInput)
parameterVector <- sigmoidalFitFunction(normalizedInput, tryCounter = 2)
#Check the results
if(parameterVector$isThisaFit){
intensityTheoretical <- sigmoidalFitFormula(time,
maximum = parameterVector$maximum_Estimate,
slopeParam = parameterVector$slopeParam_Estimate,
midPoint = parameterVector$midPoint_Estimate)
comparisonData <- cbind(dataInput, intensityTheoretical)
require(ggplot2)
ggplot(comparisonData) +
geom_point(aes(x = time, y = intensity)) +
geom_line(aes(x = time, y = intensityTheoretical)) +
expand_limits(x = 0, y = 0)
}
if(!parameterVector$isThisaFit){
print(parameterVector)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.