View source: R/log_normal_model.R
log_normal_model | R Documentation |
Defines a log normal model for peak height variability
log_normal_model(
template,
degradation = rep(0, length(template)),
LSAE = stats::setNames(rep(1, length(model_settings$locus_names)),
model_settings$locus_names),
c2,
k2,
model_settings
)
template |
Numeric vector |
degradation |
Numeric vector of same length as template. Degradation parameters for each contributor. |
LSAE |
Numeric vector (named) with Locus Specific Amplification Efficiencies. See sample_LSAE. Defaults to 1 for each locus. |
c2 |
Numeric. Allele variance parameter. |
k2 |
Optionally a numeric vector with stutter variance parameters. See sample_log_normal_stutter_variance. |
model_settings |
List. Possible parameters:
|
Define a log normal model for peak height variability with the parametrisation as described by Bright et al. The model may then be used to sample DNA profiles using the sample_mixture_from_genotypes function. Alternatively, to sample many models and profiles in one go with parameters according to a specified distribution, the sample_mixtures function can be used.
Object of class pg_model
.
Bright, J.A. et al. (2016). Developmental validation of STRmix™, expert software for the interpretation of forensic DNA profiles. Forensic Science International: Genetics, 23, 226-239. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.fsigen.2016.05.007")}
gamma_model.
gf <- gf_configuration()
freqs <- read_allele_freqs(system.file("extdata","FBI_extended_Cauc_022024.csv",
package = "simDNAmixtures"))
k2 <- sample_log_normal_stutter_variance(gf$log_normal_settings$stutter_variability)
model <- log_normal_model(template = 1e3, c2 = 15, k2 = k2,
model_settings = gf$log_normal_settings)
model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.