Nothing
#' Calculate the bias-eliminated coverage
#'
#' Estimate the bias-eliminated coverage and the Monte Carlo standard error of this estimate given a vector of confidence intervals and the true value.
#'
#' @param ll A numeric vector containing the lower limits of the confidence intervals.
#' @param ul A numeric vector containing the upper limits of the confidence intervals.
#' @param estimates A numeric vector containing the estimates from the model(s).
#' @param get A character vector containing the values returned by the function.
#' @param na.rm A logical value indicating whether NA values for ll and ul should be removed before coverage estimation.
#' @param ... Additional arguments to be ignored.
#'
#' @return A named vector containing the estimate and the Monte Carlo standard error for the coverage.
#' @export
#'
#' @examples biasEliminatedCoverage(estimates = rnorm(4), ll = c(-1, -1, -1, -1), ul = c(1, 1, 1, -0.5))
biasEliminatedCoverage <- function(estimates, ll, ul, get = c("biasEliminatedCoverage", "biasEliminatedCoverage_mcse"), na.rm = FALSE, ...) {
assertthat::assert_that(length(!is.na(ul) > 0 & !is.na(ll)) > 0)
x <- c()
if (na.rm) {
ul <- ul[!is.na(ul) & !is.na(ll)]
ll <- ll[!is.na(ul) & !is.na(ll)]
estimates <- estimates[!is.na(estimates)]
}
assertthat::assert_that(length(ll) == length(ul) & length(ul) == length(estimates))
if (any(is.na(c(ul, ll)))) {
x["biasEliminatedCoverage"] <- NA
x["biasEliminatedCoverage_mcse"] <- NA
return(x[get])
}
assertthat::assert_that(all(ll < ul))
mean_estimate <- mean(estimates)
covered <- mean_estimate <= ul & mean_estimate >= ll
n <- length(covered)
x["biasEliminatedCoverage"] <- mean(covered)
x["biasEliminatedCoverage_mcse"] <- sqrt((x["biasEliminatedCoverage"] * (1 - x["biasEliminatedCoverage"])) / n)
return(x[get])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.