View source: R/posterior_predictive.simmr_output.R
posterior_predictive | R Documentation |
This function takes the output from simmr_mcmc
and plots the
posterior predictive distribution to enable visualisation of model fit.
The simulated posterior predicted values are returned as part of the
object and can be saved for external use
posterior_predictive(simmr_out, group = 1, prob = 0.5, plot_ppc = TRUE)
simmr_out |
A run of the simmr model from |
group |
Which group to run it for (currently only numeric rather than group names) |
prob |
The probability interval for the posterior predictives. The default is 0.5 (i.e. 50pc intervals) |
plot_ppc |
Whether to create a bayesplot of the posterior predictive or not. |
plot of posterior predictives and simulated values
data(geese_data_day1)
simmr_1 <- with(
geese_data_day1,
simmr_load(
mixtures = mixtures,
source_names = source_names,
source_means = source_means,
source_sds = source_sds,
correction_means = correction_means,
correction_sds = correction_sds,
concentration_means = concentration_means
)
)
# Plot
plot(simmr_1)
# Print
simmr_1
# MCMC run
simmr_1_out <- simmr_mcmc(simmr_1)
# Prior predictive
post_pred <- posterior_predictive(simmr_1_out)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.