Control Parameters for Simplex Regression

Description

Various parameters that control fitting of simplex regression models using simplexreg.

Usage

1
2
simplexreg.control(maxit = 200, beta = NULL, gamma = NULL, alpha = NULL, 
   	tol = 1e-6, ...)

Arguments

maxit

maximum number of iterations

beta

start value for beta modelling the mean parameter

gamma

start value for gamma modelling the dispersion

alpha

start value for alpha modelling correlation structure using GEEs, see Song et.al (2004)

tol

numeric tolerance for convergence in Fisher scoring

...

currently not used

Value

A list with the arguments specified.

See Also

simplexreg

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# GLM models
data("sdac", package = "simplexreg")
sim.glm1 <- simplexreg(rcd~ageadj+chemo, link = "logit", 
  data = sdac, beta = c(1.115, 0.013, 0.252))
sim.glm2 <- simplexreg(rcd~ageadj+chemo|age, link = "logit", 
  data = sdac, beta = c(1.115, 0.013, 0.252), gamma = c(2.61, -0.015))

# GEE models
data("retinal", package = "simplexreg")
sim.gee1 <- simplexreg(Gas~LogT+LogT2+Level|1|Time, link = "logit", 
  corr = "Exc", id = ID, data = retinal, beta = c(2.72, 0.034, -0.329, 0.409), 
  alpha = -0.3)
sim.gee2 <- simplexreg(Gas~LogT+LogT2+Level|LogT+Level|Time, 
  link = "logit", corr = "AR1", id = ID, data = retinal, alpha = -0.3,
  beta = c(2.72, 0.034, -0.329, 0.409))