Nothing
## ----include=FALSE------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
run <- requireNamespace("dplyr", quietly = TRUE) &&
requireNamespace("gt", quietly = TRUE)
knitr::opts_chunk$set(eval = run)
## ----message=FALSE, warning=FALSE---------------------------------------------
library(simtrial)
library(knitr)
library(dplyr)
library(gt)
## -----------------------------------------------------------------------------
set.seed(123)
x <- sim_fixed_n(
n_sim = 1,
timing_type = 5,
rho_gamma = data.frame(rho = c(0, 0, 1), gamma = c(0, 1, 1))
)
x |>
gt() |>
fmt_number(columns = c("ln_hr", "z", "duration", "v1", "v2", "v3"), decimals = 2)
## ----message=FALSE, warning=FALSE, cache=FALSE--------------------------------
set.seed(123)
s <- sim_pw_surv(n = 100)
s |>
head() |>
gt() |>
fmt_number(columns = c("enroll_time", "fail_time", "dropout_time", "cte"), decimals = 2)
## ----warning=FALSE, message=FALSE---------------------------------------------
x <- s |> cut_data_by_event(75)
x |>
head() |>
gt() |>
fmt_number(columns = "tte", decimals = 2)
## ----warning=FALSE, message=FALSE---------------------------------------------
z <- s |>
cut_data_by_event(75) |>
maxcombo(rho = c(0, 0, 1, 1), gamma = c(0, 1, 0, 1))
z
## ----warning=FALSE, message=FALSE---------------------------------------------
z <- s |>
cut_data_by_event(75) |>
maxcombo(rho = c(0, 1), gamma = c(1, 0))
z
## ----warning=FALSE, message=FALSE---------------------------------------------
library(survival)
aml |>
head() |>
gt()
## ----warning=FALSE, message=FALSE---------------------------------------------
x <- aml |> transmute(
tte = time,
event = status,
stratum = "All",
treatment = case_when(
x == "Maintained" ~ "experimental",
x == "Nonmaintained" ~ "control"
)
)
x |>
head() |>
gt()
## ----warning=FALSE, message=FALSE---------------------------------------------
x |> maxcombo(rho = c(0, 0), gamma = c(0, 1))
## ----cache=FALSE, warning=FALSE, message=FALSE--------------------------------
set.seed(123)
# Only use cut events + min follow-up
x <- sim_fixed_n(
n_sim = 100,
timing_type = 5,
rho_gamma = data.frame(rho = c(0, 0, 1), gamma = c(0, 1, 1))
)
# MaxCombo power estimate for cutoff at max of targeted events, minimum follow-up
x |>
group_by(sim) |>
filter(row_number() == 1) |>
ungroup() |>
summarize(power = mean(p_value < .001))
## ----cache=FALSE, warning=FALSE, message=FALSE--------------------------------
# Only use cuts for events and events + min follow-up
set.seed(123)
x <- sim_fixed_n(
n_sim = 100,
timing_type = c(2, 5),
rho_gamma = data.frame(rho = 0, gamma = c(0, 1))
)
## ----warning=FALSE, message=FALSE---------------------------------------------
# Subset to targeted events cutoff tests
# This chunk will be updated after the development of sim_gs_n and sim_fixed_n
x |>
filter(cut == "Targeted events") |>
group_by(sim) |>
filter(row_number() == 1) |>
ungroup() |>
summarize(power = mean(p_value < .025))
## ----warning=FALSE, message=FALSE---------------------------------------------
# Subset to targeted events cutoff tests
x |>
filter(cut != "Targeted events") |>
group_by(sim) |>
filter(row_number() == 1) |>
ungroup() |>
summarize(power = mean(p_value < .025))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.