| deriv_2nd_arma11 | R Documentation | 
Obtain the second derivative of the ARMA(1,1) process.
deriv_2nd_arma11(phi, theta, sigma2, tau)
| phi | A  | 
| theta | A  | 
| sigma2 | A  | 
| tau | A  | 
A matrix with:
 The first column containing the second partial derivative with respect to \phi;
 The second column containing the second partial derivative with respect to \theta;
 The third column contains the second partial derivative with respect to \sigma ^2.
 The fourth column contains the partial derivative with respect to \phi and \theta.
 The fiveth column contains the partial derivative with respect to \sigma ^2 and \phi.
 The sixth column contains the partial derivative with respect to \sigma ^2 and \theta.
Taking the second derivative with respect to \phi yields:
\frac{{{\partial ^2}}}{{\partial {\phi ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}}}{{{{(\phi  - 1)}^5}{{(\phi  + 1)}^3}\tau _j^2}}\left( \begin{array}{cc}
&{(\phi  - 1)^2}\left( {{{(\phi  + 1)}^2}\left( {{\theta ^2}\phi  + \theta {\phi ^2} + \theta  + \phi } \right)\tau _j^2\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 1} \right){\phi ^{\frac{{{\tau _j}}}{2} - 2}} + \left( {{\phi ^2} - 1} \right)\left( {{\theta ^2}( - \phi ) + \theta \left( {{\phi ^2} + 4\phi  + 1} \right) - \phi } \right){\tau _j}\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 2} \right){\phi ^{\frac{{{\tau _j}}}{2} - 2}} - 2{{(\theta  - 1)}^2}\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
&- 12{(\phi  + 1)^2}\left( { - \frac{1}{2}{{(\theta  + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta  + \phi )(\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
&+ 6(\phi  + 1)(\phi  - 1)\left( {\frac{1}{2}{{(\theta  + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} + (\theta  + \phi )(\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) + (\phi  + 1)\left( { - (\theta  + \phi )(\theta \phi  + 1){\tau _j}\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 2} \right){\phi ^{\frac{{{\tau _j}}}{2} - 1}} - \theta (\theta  + \phi )\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) - (\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) - {{(\theta  + 1)}^2}\phi {\tau _j}} \right)} \right) \\ 
\end{array}  \right)
Taking the second derivative with respect to \theta yields:
\frac{{{\partial ^2}}}{{\partial {\theta ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}\left( {\left( {{\phi ^2} - 1} \right){\tau _j} + 2\phi \left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right)}}{{{{(\phi  - 1)}^3}(\phi  + 1)\tau _j^2}} 
Taking the second derivative with respect to \sigma ^2 yields:
\frac{{{\partial ^2}}}{{\partial {\sigma ^4}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = 0 
Taking the derivative with respect to \sigma^2 and \theta yields:
\frac{\partial }{{\partial \theta }}\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{2}{{{{(\phi  - 1)}^3}(\phi  + 1)\tau _j^2}}\left( {(\theta  + 1)\left( {{\phi ^2} - 1} \right){\tau _j} + \left( {2\theta \phi  + {\phi ^2} + 1} \right)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right)
Taking the derivative with respect to \sigma^2 and \phi yields:
\frac{\partial }{{\partial \phi }}\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{2}{{{{(\phi  - 1)}^4}{{(\phi  + 1)}^2}\tau _j^2}}\left( \begin{array}{ll}
&- (\phi  - 1)(\phi  + 1)\left( \begin{array}{ll}
                               &- (\theta  + \phi )(\theta \phi  + 1){\tau _j}\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 2} \right){\phi ^{\frac{{{\tau _j}}}{2} - 1}} \\
                               &- \theta (\theta  + \phi )\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\
                               &- (\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\
                               &- {(\theta  + 1)^2}\phi {\tau _j} \\ 
                               \end{array}  \right) \\
&+ (\phi  - 1)\left( { - \frac{1}{2}{{(\theta  + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta  + \phi )(\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
&+ 3(\phi  + 1)\left( { - \frac{1}{2}{{(\theta  + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta  + \phi )(\theta \phi  + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\ 
\end{array}  \right)
Taking the derivative with respect to \phi and \theta yields:
\frac{\partial }{{\partial \theta }}\frac{\partial }{{\partial \phi }}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) =  - \frac{{2{\sigma ^2}}}{{{{(\phi  - 1)}^4}{{(\phi  + 1)}^2}\tau _j^2}}\left( \begin{array}{cc}
&{\tau _j}\left( \begin{array}{cc}
                &2(\theta  + 1)(\phi  - 1){(\phi  + 1)^2} \\
                &+ 2\left( {{\phi ^2} - 1} \right)\left( {2\theta \phi  + {\phi ^2} + 1} \right){\phi ^{\frac{{{\tau _j}}}{2} - 1}} \\
                &- \left( {{\phi ^2} - 1} \right)\left( {2\theta \phi  + {\phi ^2} + 1} \right){\phi ^{{\tau _j} - 1}} \\ 
                \end{array}  \right) \\
&+ 2\left( {\theta (\phi (3\phi  + 2) + 1) + \phi \left( {{\phi ^2} + \phi  + 3} \right) + 1} \right)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\ 
\end{array}  \right)
James Joseph Balamuta (JJB)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.