deriv_2nd_arma11 | R Documentation |
Obtain the second derivative of the ARMA(1,1) process.
deriv_2nd_arma11(phi, theta, sigma2, tau)
phi |
A |
theta |
A |
sigma2 |
A |
tau |
A |
A matrix
with:
The first column containing the second partial derivative with respect to \phi
;
The second column containing the second partial derivative with respect to \theta
;
The third column contains the second partial derivative with respect to \sigma ^2
.
The fourth column contains the partial derivative with respect to \phi
and \theta
.
The fiveth column contains the partial derivative with respect to \sigma ^2
and \phi
.
The sixth column contains the partial derivative with respect to \sigma ^2
and \theta
.
Taking the second derivative with respect to \phi
yields:
\frac{{{\partial ^2}}}{{\partial {\phi ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}}}{{{{(\phi - 1)}^5}{{(\phi + 1)}^3}\tau _j^2}}\left( \begin{array}{cc}
&{(\phi - 1)^2}\left( {{{(\phi + 1)}^2}\left( {{\theta ^2}\phi + \theta {\phi ^2} + \theta + \phi } \right)\tau _j^2\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 1} \right){\phi ^{\frac{{{\tau _j}}}{2} - 2}} + \left( {{\phi ^2} - 1} \right)\left( {{\theta ^2}( - \phi ) + \theta \left( {{\phi ^2} + 4\phi + 1} \right) - \phi } \right){\tau _j}\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 2} \right){\phi ^{\frac{{{\tau _j}}}{2} - 2}} - 2{{(\theta - 1)}^2}\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
&- 12{(\phi + 1)^2}\left( { - \frac{1}{2}{{(\theta + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta + \phi )(\theta \phi + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
&+ 6(\phi + 1)(\phi - 1)\left( {\frac{1}{2}{{(\theta + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} + (\theta + \phi )(\theta \phi + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) + (\phi + 1)\left( { - (\theta + \phi )(\theta \phi + 1){\tau _j}\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 2} \right){\phi ^{\frac{{{\tau _j}}}{2} - 1}} - \theta (\theta + \phi )\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) - (\theta \phi + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) - {{(\theta + 1)}^2}\phi {\tau _j}} \right)} \right) \\
\end{array} \right)
Taking the second derivative with respect to \theta
yields:
\frac{{{\partial ^2}}}{{\partial {\theta ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}\left( {\left( {{\phi ^2} - 1} \right){\tau _j} + 2\phi \left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right)}}{{{{(\phi - 1)}^3}(\phi + 1)\tau _j^2}}
Taking the second derivative with respect to \sigma ^2
yields:
\frac{{{\partial ^2}}}{{\partial {\sigma ^4}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = 0
Taking the derivative with respect to \sigma^2
and \theta
yields:
\frac{\partial }{{\partial \theta }}\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{2}{{{{(\phi - 1)}^3}(\phi + 1)\tau _j^2}}\left( {(\theta + 1)\left( {{\phi ^2} - 1} \right){\tau _j} + \left( {2\theta \phi + {\phi ^2} + 1} \right)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right)
Taking the derivative with respect to \sigma^2
and \phi
yields:
\frac{\partial }{{\partial \phi }}\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = \frac{2}{{{{(\phi - 1)}^4}{{(\phi + 1)}^2}\tau _j^2}}\left( \begin{array}{ll}
&- (\phi - 1)(\phi + 1)\left( \begin{array}{ll}
&- (\theta + \phi )(\theta \phi + 1){\tau _j}\left( {{\phi ^{\frac{{{\tau _j}}}{2}}} - 2} \right){\phi ^{\frac{{{\tau _j}}}{2} - 1}} \\
&- \theta (\theta + \phi )\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\
&- (\theta \phi + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\
&- {(\theta + 1)^2}\phi {\tau _j} \\
\end{array} \right) \\
&+ (\phi - 1)\left( { - \frac{1}{2}{{(\theta + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta + \phi )(\theta \phi + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
&+ 3(\phi + 1)\left( { - \frac{1}{2}{{(\theta + 1)}^2}\left( {{\phi ^2} - 1} \right){\tau _j} - (\theta + \phi )(\theta \phi + 1)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right)} \right) \\
\end{array} \right)
Taking the derivative with respect to \phi
and \theta
yields:
\frac{\partial }{{\partial \theta }}\frac{\partial }{{\partial \phi }}\nu _j^2\left( {\phi ,\theta ,{\sigma ^2}} \right) = - \frac{{2{\sigma ^2}}}{{{{(\phi - 1)}^4}{{(\phi + 1)}^2}\tau _j^2}}\left( \begin{array}{cc}
&{\tau _j}\left( \begin{array}{cc}
&2(\theta + 1)(\phi - 1){(\phi + 1)^2} \\
&+ 2\left( {{\phi ^2} - 1} \right)\left( {2\theta \phi + {\phi ^2} + 1} \right){\phi ^{\frac{{{\tau _j}}}{2} - 1}} \\
&- \left( {{\phi ^2} - 1} \right)\left( {2\theta \phi + {\phi ^2} + 1} \right){\phi ^{{\tau _j} - 1}} \\
\end{array} \right) \\
&+ 2\left( {\theta (\phi (3\phi + 2) + 1) + \phi \left( {{\phi ^2} + \phi + 3} \right) + 1} \right)\left( {{\phi ^{{\tau _j}}} - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + 3} \right) \\
\end{array} \right)
James Joseph Balamuta (JJB)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.