deriv_ar1 | R Documentation |
Obtain the first derivative of the AR(1) process.
deriv_ar1(phi, sigma2, tau)
phi |
A |
sigma2 |
A |
tau |
A |
A matrix
with the first column containing the partial derivative with respect to \phi
and the second column contains the partial derivative with respect to \sigma ^2
Taking the derivative with respect to \phi
yields:
\frac{\partial }{{\partial \phi }}\nu _j^2\left( {\phi ,{\sigma ^2}} \right) = \frac{{2{\sigma ^2}\left( {\left( {{\phi ^2} - 1} \right){\tau _j}\left( { - 2{\phi ^{\frac{{{\tau _j}}}{2}}} + {\phi ^{{\tau _j}}} - \phi - 1} \right) - \left( {\phi \left( {3\phi + 2} \right) + 1} \right)\left( { - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + {\phi ^{{\tau _j}}} + 3} \right)} \right)}}{{{{\left( {\phi - 1} \right)}^4}{{\left( {\phi + 1} \right)}^2}\tau _j^2}}
Taking the derivative with respect to \sigma ^2
yields:
\frac{\partial }{{\partial {\sigma ^2}}}\nu _j^2\left( {\phi ,{\sigma ^2}} \right) = \frac{{\left( {{\phi ^2} - 1} \right){\tau _j} + 2\phi \left( { - 4{\phi ^{\frac{{{\tau _j}}}{2}}} + {\phi ^{{\tau _j}}} + 3} \right)}}{{{{\left( {\phi - 1} \right)}^3}\left( {\phi + 1} \right)\tau _j^2}}
James Joseph Balamuta (JJB)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.