gmwm_engine | R Documentation |
This function uses the Generalized Method of Wavelet Moments (GMWM) to estimate the parameters of a time series model.
gmwm_engine(
theta,
desc,
objdesc,
model_type,
wv_empir,
omega,
scales,
starting
)
theta |
A |
desc |
A |
objdesc |
A |
model_type |
A |
wv_empir |
A |
omega |
A |
scales |
A |
starting |
A |
If type = "imu" or "ssm", then parameter vector should indicate the characters of the models that compose the latent or state-space model. The model options are:
"AR1"a first order autoregressive process with parameters (\phi,\sigma^2)
"ARMA"an autoregressive moving average process with parameters (\phi _p, \theta _q, \sigma^2)
"DR"a drift with parameter \omega
"QN"a quantization noise process with parameter Q
"RW"a random walk process with parameter \sigma^2
"WN"a white noise process with parameter \sigma^2
If model_type = "imu" or type = "ssm" then starting values pass through an initial bootstrap and pseudo-optimization before being passed to the GMWM optimization. If robust = TRUE the function takes the robust estimate of the wavelet variance to be used in the GMWM estimation procedure.
A vec
that contains the parameter estimates from GMWM estimator.
JJB
Wavelet variance based estimation for composite stochastic processes, S. Guerrier and Robust Inference for Time Series Models: a Wavelet-Based Framework, S. Guerrier
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.