Nothing
The goal of sinar is to implement the Conditional Least Square method for the Spatial non-negative Integer-valued Autoregressive (SINAR(1,1)).
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("gilberto-sassi/sinar")
library(sinar)
## Simulated data matrix from SINAR(1,1) with Poison(5) innovation
matrix_simulated <- sinar_pois(15, 15, 0.2, 0.2, 0.4, 5)
## Conditional Least Square (CLS) estimates
cls(matrix_simulated)
#> a10 a01 a11 mu
#> 0.1605389 0.2860054 0.4277413 3.1261927
## Covariance matrix of CLS estimates
emp_cov(matrix_simulated)
#> a10 a01 a11 mu
#> a10 0.0044018403 0.0001991086 -0.001362643 -0.08051497
#> a01 0.0001991086 0.0032884060 -0.000882474 -0.06218858
#> a11 -0.0013626431 -0.0008824740 0.004125110 -0.04507648
#> mu -0.0805149667 -0.0621885767 -0.045076478 4.67716808
library(sinar)
## Nematodes counting datasets
data("nematodes")
## Conditional Least Square (CLS) estimates
cls(nematodes)
#> a10 a01 a11 mu
#> 0.20664577 0.33147378 0.04523086 2.14476453
## Covariance matrix of CLS estimates
emp_cov(nematodes)
#> a10 a01 a11 mu
#> a10 0.0111169222 -0.0009999304 -0.003310576 -0.017278481
#> a01 -0.0009999304 0.0082946407 -0.001503724 -0.009838536
#> a11 -0.0033105760 -0.0015037242 0.004507501 0.004049939
#> mu -0.0172784806 -0.0098385364 0.004049939 0.268045835
library(sinar)
## Carabidae counting dataset
data("carabidae")
## Conditional Least Square (CLS) estimates
cls(carabidae)
#> a10 a01 a11 mu
#> 0.14595392 0.12725313 0.08798513 9.10361759
## Covariance matrix of CLS estimates
emp_cov(carabidae)
#> a10 a01 a11 mu
#> a10 0.014484776 -0.003141815 -0.005525906 -0.06795645
#> a01 -0.003141815 0.014365625 -0.001265544 -0.11558802
#> a11 -0.005525906 -0.001265544 0.023795735 -0.25417404
#> mu -0.067956449 -0.115588024 -0.254174036 7.22525572
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.