Description Usage Arguments Value Examples
V
is the theoretical matrix from Klimko-Nelson for the SINAR(1,1)
model. Basically, we know
√{n}(\hat{a}_{10} - a_{10}, \hat{a}_{01} - a_{01}, \hat{a}_{11} - a_{11}, \hat{μ}_ε - μ_ε)^\top \sim MNV(0, Σ)
where
Σ = V^{-1}W V^{-1}.
For more details, check Klimko and Nelson (1978).
1 | teo_V(a10, a01, a11, mu_e, s2_e)
|
a10 |
is the parameter in the equation X[i, j]a_{10}X[i - 1, j] + a_{01}X[i, j - 1] + a_{11}X[i - 1, j - 1] + ε_{i,j} |
a01 |
is the parameter in the equation X[i, j]a_{10}X[i - 1, j] + a_{01}X[i, j - 1] + a_{11}X[i - 1, j - 1] + ε_{i,j} |
a11 |
is the parameter in the equation X[i, j]a_{10}X[i - 1, j] + a_{01}X[i, j - 1] + a_{11}X[i - 1, j - 1] + ε_{i,j} |
mu_e |
is the mean of the innovations ε_{i,j} |
s2_e |
is the standar deviation of the innovations ε_{i,j} |
The matrix V estimated empirically.
1 2 3 4 5 6 7 8 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.