View source: R/sits_label_classification.R
sits_label_classification | R Documentation |
Takes a set of classified raster layers with probabilities, and label them based on the maximum probability for each pixel.
sits_label_classification(
cube,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1",
progress = TRUE
)
## S3 method for class 'probs_cube'
sits_label_classification(
cube,
...,
memsize = 4L,
multicores = 2L,
output_dir,
version = "v1",
progress = TRUE
)
## S3 method for class 'probs_vector_cube'
sits_label_classification(
cube,
...,
output_dir,
version = "v1",
progress = TRUE
)
## S3 method for class 'raster_cube'
sits_label_classification(cube, ...)
## S3 method for class 'derived_cube'
sits_label_classification(cube, ...)
## Default S3 method:
sits_label_classification(cube, ...)
cube |
Classified image data cube. |
memsize |
maximum overall memory (in GB) to label the classification. |
multicores |
Number of workers to label the classification in parallel. |
output_dir |
Output directory for classified files. |
version |
Version of resulting image (in the case of multiple runs). |
progress |
Show progress bar? |
... |
Other parameters for specific functions. |
A data cube with an image with the classified map.
Please refer to the sits documentation available in <https://e-sensing.github.io/sitsbook/> for detailed examples.
Rolf Simoes, rolf.simoes@inpe.br
Felipe Souza, felipe.souza@inpe.br
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# plot the probability cube
plot(probs_cube)
# smooth the probability cube using Bayesian statistics
bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
# plot the smoothed cube
plot(bayes_cube)
# label the probability cube
label_cube <- sits_label_classification(
bayes_cube,
output_dir = tempdir()
)
# plot the labelled cube
plot(label_cube)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.