sits_whittaker | R Documentation |
The algorithm searches for an optimal warping polynomial. The degree of smoothing depends on smoothing factor lambda (usually from 0.5 to 10.0). Use lambda = 0.5 for very slight smoothing and lambda = 5.0 for strong smoothing.
sits_whittaker(data = NULL, lambda = 0.5)
data |
Time series or matrix. |
lambda |
Smoothing factor to be applied (default 0.5). |
Filtered time series
Rolf Simoes, rolf.simoes@inpe.br
Gilberto Camara, gilberto.camara@inpe.br
Felipe Carvalho, felipe.carvalho@inpe.br
Francesco Vuolo, Wai-Tim Ng, Clement Atzberger, "Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data", Int Journal of Applied Earth Observation and Geoinformation, vol. 57, pg. 202-213, 2107.
sits_apply
if (sits_run_examples()) {
# Retrieve a time series with values of NDVI
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
# Filter the point using the Whittaker smoother
point_whit <- sits_filter(point_ndvi, sits_whittaker(lambda = 3.0))
# Merge time series
point_ndvi <- sits_merge(point_ndvi, point_whit,
suffix = c("", ".WHIT"))
# Plot the two points to see the smoothing effect
plot(point_ndvi)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.