R/sits-package.R

#' @title sits
#' @description Satellite Image Time Series Analysis
#'              for Earth Observation Data Cubes
#'
#' @section Purpose:
#'
#' The SITS package provides a set of tools for analysis,
#' visualization and classification of satellite image time series.
#' It includes methods for filtering, clustering, classification,
#' and post-processing.
#'
#' @note
#'  The main \code{sits} classification workflow has the following steps:
#' \enumerate{
#'      \item{\code{\link[sits]{sits_cube}}: selects a ARD image collection from
#'          a cloud provider.}
#'      \item{\code{\link[sits]{sits_cube_copy}}: copies an ARD image collection
#'          from a cloud provider to a local directory for faster processing.}
#'      \item{\code{\link[sits]{sits_regularize}}: create a regular data cube
#'          from an ARD image collection.}
#'      \item{\code{\link[sits]{sits_apply}}: create new indices by combining
#'          bands of a  regular data cube (optional).}
#'      \item{\code{\link[sits]{sits_get_data}}: extract time series
#'          from a regular data cube based on user-provided labelled samples.}
#'      \item{\code{\link[sits]{sits_train}}: train a machine learning
#'          model based on image time series.}
#'      \item{\code{\link[sits]{sits_classify}}: classify a data cube
#'          using a machine learning model and obtain a probability cube.}
#'      \item{\code{\link[sits]{sits_smooth}}: post-process a probability cube
#'          using a spatial smoother to remove outliers and
#'          increase spatial consistency.}
#'      \item{\code{\link[sits]{sits_label_classification}}: produce a
#'          classified map by selecting the label with the highest probability
#'          from a smoothed cube.}
#' }
#'
#' @docType package
#' @name sits-package
#' @aliases sits
"_PACKAGE"
NULL

Try the sits package in your browser

Any scripts or data that you put into this service are public.

sits documentation built on Sept. 9, 2025, 5:54 p.m.