drop_labels | R Documentation |
For (partially) labelled vectors, zap_labels()
will replace
all values that have a value label attribute with NA
;
zap_unlabelled()
, as counterpart, will replace all values
that don't have a value label attribute with NA
.
drop_labels()
drops all value labels for unused values,
i.e. values that are not present in a vector. fill_labels()
is the
counterpart to drop_labels()
and adds value labels to
a partially labelled vector, i.e. if not all values are
labelled, non-labelled values get labels.
drop_labels(x, ..., drop.na = TRUE) fill_labels(x, ...) zap_labels(x, ...) zap_unlabelled(x, ...)
x |
(partially) |
... |
Optional, unquoted names of variables that should be selected for
further processing. Required, if |
drop.na |
Logical, whether existing value labels of tagged NA values
(see |
For zap_labels()
, x
, where all labelled values are converted to NA
.
For zap_unlabelled()
, x
, where all non-labelled values are converted to NA
.
For drop_labels()
, x
, where value labels for non-existing values are removed.
For fill_labels()
, x
, where labels for non-labelled values are added.
If x
is a data frame, the complete data frame x
will be
returned, with variables specified in ...
being converted;
if ...
is not specified, applies to all variables in the
data frame.
if (require("sjmisc") && require("dplyr")) { # zap_labels() ---- data(efc) str(efc$e42dep) x <- set_labels( efc$e42dep, labels = c("independent" = 1, "severe dependency" = 4) ) table(x) get_values(x) str(x) # zap all labelled values table(zap_labels(x)) get_values(zap_labels(x)) str(zap_labels(x)) # zap all unlabelled values table(zap_unlabelled(x)) get_values(zap_unlabelled(x)) str(zap_unlabelled(x)) # in a pipe-workflow efc %>% select(c172code, e42dep) %>% set_labels( e42dep, labels = c("independent" = 1, "severe dependency" = 4) ) %>% zap_labels() # drop_labels() ---- rp <- rec_pattern(1, 100) rp # sample data data(efc) # recode carers age into groups of width 5 x <- rec(efc$c160age, rec = rp$pattern) # add value labels to new vector x <- set_labels(x, labels = rp$labels) # watch result. due to recode-pattern, we have age groups with # no observations (zero-counts) frq(x) # now, let's drop zero's frq(drop_labels(x)) # drop labels, also drop NA value labels, then also zap tagged NA if (require("haven")) { x <- labelled(c(1:3, tagged_na("z"), 4:1), c("Agreement" = 1, "Disagreement" = 4, "Unused" = 5, "Not home" = tagged_na("z"))) x drop_labels(x, drop.na = FALSE) drop_labels(x) zap_na_tags(drop_labels(x)) # fill_labels() ---- # create labelled integer, with tagged missings x <- labelled( c(1:3, tagged_na("a", "c", "z"), 4:1), c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"), "Refused" = tagged_na("a"), "Not home" = tagged_na("z")) ) # get current values and labels x get_labels(x) fill_labels(x) get_labels(fill_labels(x)) # same as get_labels(x, non.labelled = TRUE) } }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.