get_skimmers | R Documentation |
These functions are used to set the default skimming functions for a data
type. They are combined with the base skim function list (sfl
) in
skim_with()
, to create the summary tibble for each type.
get_skimmers(column) ## Default S3 method: get_skimmers(column) ## S3 method for class 'numeric' get_skimmers(column) ## S3 method for class 'factor' get_skimmers(column) ## S3 method for class 'character' get_skimmers(column) ## S3 method for class 'logical' get_skimmers(column) ## S3 method for class 'complex' get_skimmers(column) ## S3 method for class 'Date' get_skimmers(column) ## S3 method for class 'POSIXct' get_skimmers(column) ## S3 method for class 'difftime' get_skimmers(column) ## S3 method for class 'Timespan' get_skimmers(column) ## S3 method for class 'ts' get_skimmers(column) ## S3 method for class 'list' get_skimmers(column) ## S3 method for class 'AsIs' get_skimmers(column) ## S3 method for class 'haven_labelled' get_skimmers(column) modify_default_skimmers(skim_type, new_skim_type = NULL, new_funs = list())
column |
An atomic vector or list. A column from a data frame. |
skim_type |
A character scalar. The class of the object with default skimmers. |
new_skim_type |
The type to assign to the looked up set of skimmers. |
new_funs |
Replacement functions for those in |
When creating your own set of skimming functions, call sfl()
within a
get_skimmers()
method for your particular type. Your call to sfl()
should
also provide a matching class in the skim_type
argument. Otherwise, it
will not be possible to dynamically reassign your default functions when
working interactively.
Call get_default_skimmers()
to see the functions for each type of summary
function currently supported. Call get_default_skimmer_names()
to just see
the names of these functions. Use modify_default_skimmers()
for a method
for changing the skim_type
or functions for a default sfl
. This is useful
for creating new default sfl
's.
A skim_function_list
object.
get_skimmers(default)
: The default method for skimming data. Only used when
a column's data type doesn't match currently installed types. Call
get_default_skimmer_names to see these defaults.
get_skimmers(numeric)
: Summary functions for numeric columns, covering both
double()
and integer()
classes: mean()
, sd()
, quantile()
and
inline_hist()
.
get_skimmers(factor)
: Summary functions for factor columns:
is.ordered()
, n_unique()
and top_counts()
.
get_skimmers(character)
: Summary functions for character columns. Also, the
default for unknown columns: min_char()
, max_char()
, n_empty()
,
n_unique()
and n_whitespace()
.
get_skimmers(logical)
: Summary functions for logical/ boolean columns:
mean()
, which produces rates for each value, and top_counts()
.
get_skimmers(complex)
: Summary functions for complex columns: mean()
.
get_skimmers(Date)
: Summary functions for Date
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(POSIXct)
: Summary functions for POSIXct
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(difftime)
: Summary functions for difftime
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(Timespan)
: Summary functions for Timespan
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(ts)
: Summary functions for ts
columns: min()
,
max()
, median()
and n_unique()
.
get_skimmers(list)
: Summary functions for list
columns: n_unique()
,
list_min_length()
and list_max_length()
.
get_skimmers(AsIs)
: Summary functions for AsIs
columns: n_unique()
,
list_min_length()
and list_max_length()
.
get_skimmers(haven_labelled)
: Summary functions for haven_labelled
columns.
Finds the appropriate skimmers for the underlying data in the vector.
sfl()
# Defining default skimming functions for a new class, `my_class`. # Note that the class argument is required for dynamic reassignment. get_skimmers.my_class <- function(column) { sfl( skim_type = "my_class", mean, sd ) } # Integer and double columns are both "numeric" and are treated the same # by default. To switch this behavior in another package, add a method. get_skimmers.integer <- function(column) { sfl( skim_type = "integer", p50 = ~ stats::quantile( ., probs = .50, na.rm = TRUE, names = FALSE, type = 1 ) ) } x <- mtcars[c("gear", "carb")] class(x$carb) <- "integer" skim(x) ## Not run: # In a package, to revert to the V1 behavior of skimming separately with the # same functions, assign the numeric `get_skimmers`. get_skimmers.integer <- skimr::get_skimmers.numeric # Or, in a local session, use `skim_with` to create a different `skim`. new_skim <- skim_with(integer = skimr::get_skimmers.numeric()) # To apply a set of skimmers from an old type to a new type get_skimmers.new_type <- function(column) { modify_default_skimmers("old_type", new_skim_type = "new_type") } ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.