Nothing
#' Refit one or more trained workflows to new data
#'
#' @description It allows retraining a set of workflows trained on new data.
#'
#' @param models_table a tibble that comes from the output of the `modeltime_wfs_multifit()`, `modeltime_wfs_multiforecast()`,
#' `modeltime_wfs_multibestmodel()` functions. For the `modeltime_wfs_multifit` function,
#' the 'table_time' object must be selected from the output.
#'
#' @return a tibble, corresponds to the same tibble supplied in the 'models_table' parameter but with the refit
#' of the workflows saved in the 'nested_model' column.
#'
#' @export
#'
#' @examples
#' library(dplyr)
#' library(earth)
#'
#' df <- sknifedatar::emae_series
#'
#' datex <- '2020-02-01'
#' df_emae <- df %>%
#' dplyr::filter(date <= datex) %>%
#' tidyr::nest(nested_column=-sector) %>%
#' head(2)
#'
#' receta_base <- recipes::recipe(value ~ ., data = df %>% select(-sector))
#'
#' mars <- parsnip::mars(mode = 'regression') %>% parsnip::set_engine('earth')
#'
#' wfsets <- workflowsets::workflow_set(
#' preproc = list(
#' R_date = receta_base),
#' models = list(M_mars = mars),
#' cross = TRUE)
#'
#' wfsets_fit <- modeltime_wfs_multifit(.wfs = wfsets,
#' .prop = 0.8,
#' serie = df_emae)
#'
#' sknifedatar::modeltime_wfs_multirefit(wfsets_fit$table_time)
#'
modeltime_wfs_multirefit <- function(models_table){
t_calibration <- models_table$calibration
t_serie <- models_table$nested_column
m_refit <- mapply(function(t_calibration, t_serie){
t_calibration %>%
modeltime::modeltime_refit(t_serie)
},t_calibration, t_serie, SIMPLIFY = F)
output_def <- models_table
output_def$calibration <- m_refit
output_def
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.