Description Usage Arguments Value See Also Examples
for a set of predictions from different models, evaluate multiple metrics and return the results in a tabular format that makes it easy to compare the predictions.
| 1 | 
| .dataset | data frame with the predictions, it must have at least the column with the observed data and at least one column that refers to the predictions of a model. | 
| .observed | string with the name of the column that contains the observed data. | 
| .predictions | string or vector of strings the columns where the predictions are stored. | 
| .metrics | metric or set of metrics to be evaluated, the metrics refer to those allowed by the package 'yardstick' from 'tidymodels'. | 
| value_table | TRUE to display disaggregated metrics. | 
data frame with 4 columns: the evaluation metrics, the estimator used, the value of the metric and the name of the model.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | set.seed(123)
library(yardstick) # métricas
predictions <-
  data.frame(truth = runif(100),
             predict_model_1 = rnorm(100, mean = 1,sd =2),
             predict_model_2 = rnorm(100, mean = 0,sd =2),
             predict_model_3 = rnorm(100, mean = 0,sd =3))
multieval(.dataset = predictions,
          .observed = "truth",
          .predictions = c("predict_model_1","predict_model_2","predict_model_3"),
          .metrics = list(rmse = rmse, rsq = rsq, mae = mae),
          value_table = TRUE)
# Output ----------------------
# A tibble: 9 x 4
# .metric .estimator .estimate model
# <chr>   <chr>          <dbl> <chr>
#   1 mae     standard     1.45    predict_model_1
# 2 mae     standard     1.67    predict_model_2
# 3 mae     standard     2.43    predict_model_3
# 4 rmse    standard     1.78    predict_model_1
# 5 rmse    standard     2.11    predict_model_2
# 6 rmse    standard     3.01    predict_model_3
# 7 rsq     standard     0.00203 predict_model_1
# 8 rsq     standard     0.0158  predict_model_2
# 9 rsq     standard     0.00254 predict_model_3
#$summary_table
# A tibble: 3 x 4
#  model             mae  rmse     rsq
#  <chr>           <dbl> <dbl>   <dbl>
#  1 predict_model_1  1.45  1.78 0.00203
#  2 predict_model_2  1.67  2.11 0.0158
#  3 predict_model_3  2.43  3.01 0.00254
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.