Description Usage Arguments Value References Examples
View source: R/slasso_functions.R
Generate synthetic data as in the simulation study of Centofanti et al. (2020).
1 | simulate_data(scenario, n_obs = 3000, type_x = "Bspline")
|
scenario |
A character strings indicating the scenario considered. It could be "Scenario I", "Scenario II", "Scenario III", and "Scenario IV". |
n_obs |
Number of observations. |
type_x |
Covariate generating mechanism, either Bspline or Brownian. |
A list containing the following arguments:
X
: Covariate matrix, where the rows correspond to argument values and columns to replications.
Y
: Response matrix, where the rows correspond to argument values and columns to replications.
X_fd
: Coavariate functions.
Y_fd
: Response functions.
clus
: True cluster membership vector.
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
1 2 | library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.