Description Usage Arguments Value References See Also Examples
View source: R/slasso_functions.R
The smooth LASSO (S-LASSO) method for the function-on-function linear regression model provides interpretable coefficient function estimates that are both locally sparse and smooth (Centofanti et al., 2020).
1 2 3 4 5 6 7 8 9 10 11 |
Y_fd |
An object of class fd corresponding to the response functions. |
X_fd |
An object of class fd corresponding to the covariate functions. |
basis_s |
B-splines basis along the |
basis_t |
B-splines basis along the |
lambda_L |
Regularization parameter of the functional LASSO penalty. |
lambda_s |
Regularization parameter of the smoothness penalty along the |
lambda_t |
Regularization parameter of the smoothness penalty along the |
B0 |
Initial estimator of the basis coefficients matrix of the coefficient function. Should have dimensions in accordance with the basis dimensions of |
... |
Other arguments to be passed to the Orthant-Wise Limited-memory Quasi-Newton optimization function. See the |
A list containing the following arguments:
B
: The basis coefficients matrix estimate of the coefficient function.
Beta_hat_fd
: The coefficient function estimate of class bifd.
alpha
: The intercept function estimate.
lambdas_L
: Regularization parameter of the functional LASSO penalty.
lambda_s
: Regularization parameter of the smoothness penalty along the s
-direction.
lambda_t
: Regularization parameter of the smoothness penalty along the t
-direction.
Y_fd
: The response functions.
X_fd
: The covariate functions.
per_0
: The fraction of domain where the coefficient function is zero.
type
: The output type.
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
1 2 3 4 5 6 7 8 9 10 11 12 13 | library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = -1.5,lambda_s =-8,lambda_t = -7,B0 =NULL,invisible=1,max_iterations=10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.