apStressMin: Approximate Power Stress MDS

apStressMinR Documentation

Approximate Power Stress MDS

Description

An implementation to minimize approximate power stress by majorization with ratio or interval optimal scaling. This approximates the power stress objective in such a way that it can be fitted with SMACOF without distance transformations. See Rusch et al. (2021) for details.

Usage

apStressMin(
  delta,
  kappa = 1,
  lambda = 1,
  nu = 1,
  type = "ratio",
  weightmat = 1 - diag(nrow(delta)),
  init = NULL,
  ndim = 2,
  acc = 1e-06,
  itmax = 10000,
  verbose = FALSE,
  principal = FALSE
)

apowerstressMin(
  delta,
  kappa = 1,
  lambda = 1,
  nu = 1,
  type = "ratio",
  weightmat = 1 - diag(nrow(delta)),
  init = NULL,
  ndim = 2,
  acc = 1e-06,
  itmax = 10000,
  verbose = FALSE,
  principal = FALSE
)

apostmds(
  delta,
  kappa = 1,
  lambda = 1,
  nu = 1,
  type = "ratio",
  weightmat = 1 - diag(nrow(delta)),
  init = NULL,
  ndim = 2,
  acc = 1e-06,
  itmax = 10000,
  verbose = FALSE,
  principal = FALSE
)

apstressMin(
  delta,
  kappa = 1,
  lambda = 1,
  nu = 1,
  type = "ratio",
  weightmat = 1 - diag(nrow(delta)),
  init = NULL,
  ndim = 2,
  acc = 1e-06,
  itmax = 10000,
  verbose = FALSE,
  principal = FALSE
)

apstressmds(
  delta,
  kappa = 1,
  lambda = 1,
  nu = 1,
  type = "ratio",
  weightmat = 1 - diag(nrow(delta)),
  init = NULL,
  ndim = 2,
  acc = 1e-06,
  itmax = 10000,
  verbose = FALSE,
  principal = FALSE
)

Arguments

delta

dist object or a symmetric, numeric data.frame or matrix of distances

kappa

power of the transformation of the fitted distances; defaults to 1

lambda

the power of the transformation of the proximities; defaults to 1

nu

the power of the transformation for weightmat; defaults to 1

type

what type of MDS to fit. Only "ratio" currently.

weightmat

a binary matrix of finite nonegative weights.

init

starting configuration

ndim

dimension of the configuration; defaults to 2

acc

numeric accuracy of the iteration. Default is 1e-6.

itmax

maximum number of iterations. Default is 10000.

verbose

should iteration output be printed; if > 1 then yes

principal

If 'TRUE', principal axis transformation is applied to the final configuration

Value

a 'smacofP' object (inheriting from 'smacofB', see smacofSym). It is a list with the components

  • delta: Observed, untransformed dissimilarities

  • tdelta: Observed explicitly transformed dissimilarities, normalized

  • dhat: Explicitly transformed dissimilarities (dhats), optimally scaled and normalized

  • confdist: Tranformed configuration distances

  • conf: Matrix of fitted configuration

  • stress: Default stress (stress 1; sqrt of explicitly normalized stress)

  • spp: Stress per point

  • ndim: Number of dimensions

  • model: Name of smacof model

  • niter: Number of iterations

  • nobj: Number of objects

  • type: Type of MDS model

  • weightmat: weighting matrix as supplied

  • stress.m: Default stress (stress-1^2)

  • tweightmat: transformed weighting matrix (here weightmat^nu)

Note

Internally we calculate the approximation parameters upsilon=nu+2*lambda*(1-(1/kappa)) and tau=lambda/kappa. They are not output.

References

Rusch, Mair, Hornik (2021). Cluster Optimized Proximity Scaling. JCGS <doi:10.1080/10618600.2020.1869027>

Examples

dis<-smacof::kinshipdelta
res<-apStressMin(as.matrix(dis),kappa=2,lambda=1.5,itmax=1000)
res
summary(res)
plot(res)
plot(res,"Shepard")
plot(res,"transplot")


smacofx documentation built on Sept. 22, 2024, 5:07 p.m.