knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE ) knitr::knit_hooks$set( source = function(x, options) { hook.r <- function(x, options) { fence <- "```" language <- tolower(options$engine) if (language == 'node') language <- 'javascript' if (!options$highlight) language <- 'text' if(!is.null(options$foldcode)) { paste0('\n\n', "<details><summary>Source</summary>\n", fence, language, '\n', x, fence, '\n\n', "</details>\n") } else { paste0('\n\n', fence, language, '\n', x, fence, '\n\n') } } x <- knitr:::hilight_source(x, 'markdown', options) hook.r( paste(c( x, '' ), collapse = '\n'), options ) } ) Sys.setlocale("LC_TIME", "C")
library(smidm) library(ggplot2) library(dplyr) library(hdrcde)
One or several persons start to show symptoms of COVID-19. When did the person become infected?
get_infection_density
for one personThe function get_infection_density()
can be used to calculate a data frame containing the infection probability when the person shows symptoms.
The function get_infection_density()
expects the following input arguments:
First, the symptom_begin_date
is needed, which defines when the person started to have symptoms.
Then, the max_incubation_days
has to be set, which defines the interval length of the distribution output.
The remaining inputs meanlog
and sdlog
are the parameters of the log-normal distribution for the infection probability.
symptom_begin_date <- as.Date("2021-12-28") max_incubation_days <- 18 meanlog <- 1.69 sdlog <- 0.55 infec_date_df <- get_infection_density(symptom_begin_date, max_incubation_days, meanlog, sdlog)
The default values of log-normal distribution are taken from the paper Xin et al [1]. In this paper the authors made a systematic review of the current literature and estimated those parameters based on their meta-analysis.
The data frame shows for each hour from the earliest potential start of infection up to the symptom begin date the resulting density of the log-normal distribution. This density can be used for calculating the most probable period of the infection.
knitr::kable(infec_date_df[100:109, ], caption = "values 100 to 109 of resulting data frame")
get_misc_infection_density
for several personsThe function get_misc_infection_density()
creates a data frame containing the mixture probability of all considered persons. It can be used to give an overview of the infection probability of several persons with symptom onset dates, e.g., one person with symptom onset on 24.12.2021 and two persons with symptom onset on 28.12.2021.
The following arguments are needed for using the function get_misc_infection_density()
:
The first parameter symptom_begin_dates
contains the dates when the persons got symptoms.
The second parameter persons
contains the number of persons having symptoms on each date.
The remaining inputs are the same as in get_infection_density
.
symptom_begin_dates <- c(as.Date("2021-12-24"), as.Date("2021-12-28")) persons <- c(1, 2) max_incubation_days <- 18 misc_infec_date_df <- get_misc_infection_density(symptom_begin_dates, persons, max_incubation_days)
This function uses the get_infection_density
function and generates a mixture distribution [2]. This probability distribution is obtained by a sum of the infection probability distribution for each symptom onset day multiplied by the percentage of persons, which have started to show symptoms on this day.
The data shows the mixture log-normal distribution and thus gives an overview of the potential infection time points for all considered persons. However, it does not necessarily have to imply that they had their infection on the same time point. In fact, there did not have to be an event, where the persons met. It shows when the persons got infected and it is possible that there is more than one infection date, which can be seen based on several maxima.
knitr::kable(misc_infec_date_df[100:109, ], caption = "values 100 to 109 of resulting data frame")
get_infection_density
.calculate_qstart_qend <- function(probability, df) { hdr_df <- hdr(den = data.frame(x = 1:length(df$distribution), y = df$distribution), p = probability * 100)$hdr qstart <- (hdr_df[1:(length(hdr_df) / 2) * 2] - 1) / 24 qend <- (hdr_df[1:(length(hdr_df) / 2) * 2 - 1] - 1) / 24 return(list("qstart" = qstart, "qend" = qend)) }
.shade_curve <- function(df, qstart, qend, fill = "red", alpha = 0.4) { subset_df <- df[floor(qstart * 24):ceiling(qend * 24), ] geom_area(data = subset_df, aes(x = x, y = y), fill = fill, color = NA, alpha = alpha) }
symptom_begin_date <- as.Date("2021-12-28") df <- infec_date_df period_80 <- .calculate_qstart_qend(0.8, df) period_95 <- .calculate_qstart_qend(0.95, df) symp_date_posixct_start <- as.POSIXct(format(as.POSIXct(symptom_begin_date, tz = "CET"), "%Y-%m-%d")) symp_date_posixct_end <- as.POSIXct(format(as.POSIXct(symptom_begin_date + 1, tz = "CET"), "%Y-%m-%d")) symp_date_posixct_mid <- symp_date_posixct_start - as.numeric(difftime(symp_date_posixct_start, symp_date_posixct_end, units = "hours")) / 2 * 3600
g <- ggplot() + scale_x_datetime(breaks = scales::date_breaks("1 days"), labels = scales::date_format("%d %b")) + theme(axis.text.x = element_text(angle = 90)) + # scale_x_continuous(breaks = x_tick, # labels = x_label) + # theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1))+ geom_path(aes(x = df$dates, y = df$distribution, color = "red")) + .shade_curve(df = data.frame(x = df$dates, y = df$distribution), period_80$qstart, period_80$qend) + .shade_curve(df = data.frame(x = df$dates, y = df$distribution), period_95$qstart, period_95$qend, alpha = 0.2) + geom_rect(data = data.frame(xmin = symp_date_posixct_start, xmax = symp_date_posixct_end, ymin = -Inf, ymax = Inf), aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax), fill = "brown", alpha = 0.3) + geom_label(aes(x = symp_date_posixct_mid, y = 0.9*max(df$distribution), label = "symptom\nonset"), colour = "brown", fill = "white", size = 5, label.size = NA) + ylab("probability") + xlab("timeline") + labs(color = 'Verteilung') + # ggtitle("Visualization of get_infection_density ") + theme(legend.position = "none", text = element_text(size = 16*5/5)) + theme(axis.text.x = element_text(colour = "black", face = "bold", angle = 30, hjust = 1)) + theme(axis.title.x = element_text(colour = "black", face = "bold")) + theme(axis.text.y = element_text(colour = "gray50")) + theme(axis.title.y = element_text(colour = "gray50")) g
get_misc_infection_density
df <- misc_infec_date_df period_80 <- .calculate_qstart_qend(0.8, df) period_95 <- .calculate_qstart_qend(0.95, df) symp_date_posixct_start <- as.POSIXct(format(as.POSIXct(symptom_begin_date, tz = "CET"), "%Y-%m-%d")) symp_date_posixct_end <- as.POSIXct(format(as.POSIXct(symptom_begin_date + 1, tz = "CET"), "%Y-%m-%d")) symp_date_posixct_mid <- symp_date_posixct_start - as.numeric(difftime(symp_date_posixct_start, symp_date_posixct_end, units = "hours")) / 2 * 3600
g <- ggplot() + scale_x_datetime(breaks = scales::date_breaks("1 days"), labels = scales::date_format("%d %b")) + theme(axis.text.x = element_text(angle = 90)) + # scale_x_continuous(breaks = x_tick, # labels = x_label) + # theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1))+ geom_path(aes(x = df$dates, y = df$distribution, color = "red")) + .shade_curve(df = data.frame(x = df$dates, y = df$distribution), period_80$qstart, period_80$qend) + .shade_curve(df = data.frame(x = df$dates, y = df$distribution), period_95$qstart, period_95$qend, alpha = 0.2) + ylab("probability") + xlab("timeline") + labs(color = 'Verteilung') + # ggtitle("Visualization of get_infection_density") + theme(legend.position = "none", text = element_text(size = 16 * 5 / 5)) + theme(axis.text.x = element_text(colour = "black", face = "bold", angle = 30, hjust = 1)) + theme(axis.title.x = element_text(colour = "black", face = "bold")) + theme(axis.text.y = element_text(colour = "gray50")) + theme(axis.title.y = element_text(colour = "gray50")) g
[1] Xin H, Wong JY, Murphy C, Yeung A, Taslim Ali S, Wu P, Cowling BJ. The Incubation Period Distribution of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Clinical Infectious Diseases, 2021; 73(12): 2344-2352.
[2] https://en.wikipedia.org/wiki/Mixture_distribution
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.