ces | R Documentation |
Function estimates CES in state space form with information potential equal to errors and returns several variables.
ces(y, seasonality = c("none", "simple", "partial", "full"),
initial = c("backcasting", "optimal"), a = NULL, b = NULL,
ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood", "MSE",
"MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout = FALSE,
cumulative = FALSE, interval = c("none", "parametric", "likelihood",
"semiparametric", "nonparametric"), level = 0.95,
bounds = c("admissible", "none"), silent = c("all", "graph", "legend",
"output", "none"), xreg = NULL, regressors = c("use", "select"),
initialX = NULL, ...)
y |
Vector or ts object, containing data needed to be forecasted. |
seasonality |
The type of seasonality used in CES. Can be: |
initial |
Can be either character or a vector of initial states. If it
is character, then it can be |
a |
First complex smoothing parameter. Should be a complex number. NOTE! CES is very sensitive to a and b values so it is advised either to leave them alone, or to use values from previously estimated model. |
b |
Second complex smoothing parameter. Can be real if
|
ic |
The information criterion used in the model selection procedure. |
loss |
The type of Loss Function used in optimization. There are also available analytical approximations for multistep functions:
Finally, just for fun the absolute and half analogues of multistep estimators
are available: |
h |
Length of forecasting horizon. |
holdout |
If |
cumulative |
If |
interval |
Type of interval to construct. This can be:
The parameter also accepts |
level |
Confidence level. Defines width of prediction interval. |
bounds |
What type of bounds to use in the model estimation. The first letter can be used instead of the whole word. |
silent |
If |
xreg |
The vector (either numeric or time series) or the matrix (or
data.frame) of exogenous variables that should be included in the model. If
matrix included than columns should contain variables and rows - observations.
Note that |
regressors |
The variable defines what to do with the provided xreg:
|
initialX |
The vector of initial parameters for exogenous variables.
Ignored if |
... |
Other non-documented parameters. For example parameter
|
The function estimates Complex Exponential Smoothing in the state space 2 described in Svetunkov, Kourentzes (2017) with the information potential equal to the approximation error. The estimation of initial states of xt is done using backcast.
For some more information about the model and its implementation, see the
vignette: vignette("ces","smooth")
Object of class "smooth" is returned. It contains the list of the following values:
model
- type of constructed model.
timeElapsed
- time elapsed for the construction of the model.
states
- the matrix of the components of CES. The included
minimum is "level" and "potential". In the case of seasonal model the
seasonal component is also included. In the case of exogenous variables the
estimated coefficients for the exogenous variables are also included.
a
- complex smoothing parameter in the form a0 + ia1
b
- smoothing parameter for the seasonal component. Can either
be real (if seasonality="P"
) or complex (if seasonality="F"
)
in a form b0 + ib1.
persistence
- persistence vector. This is the place, where
smoothing parameters live.
transition
- transition matrix of the model.
measurement
- measurement vector of the model.
initialType
- Type of the initial values used.
initial
- the initial values of the state vector (non-seasonal).
nParam
- table with the number of estimated / provided parameters.
If a previous model was reused, then its initials are reused and the number of
provided parameters will take this into account.
fitted
- the fitted values of CES.
forecast
- the point forecast of CES.
lower
- the lower bound of prediction interval. When
interval="none"
then NA is returned.
upper
- the upper bound of prediction interval. When
interval="none"
then NA is returned.
residuals
- the residuals of the estimated model.
errors
- The matrix of 1 to h steps ahead errors. Only returned when the
multistep losses are used and semiparametric interval is needed.
s2
- variance of the residuals (taking degrees of
freedom into account).
interval
- type of interval asked by user.
level
- confidence level for interval.
cumulative
- whether the produced forecast was cumulative or not.
y
- The data provided in the call of the function.
holdout
- the holdout part of the original data.
xreg
- provided vector or matrix of exogenous variables. If
regressors="s"
, then this value will contain only selected exogenous
variables.
exogenous variables were estimated as well.
initialX
- initial values for parameters of exogenous variables.
ICs
- values of information criteria of the model. Includes
AIC, AICc, BIC and BICc.
logLik
- log-likelihood of the function.
lossValue
- Cost function value.
loss
- Type of loss function used in the estimation.
FI
- Fisher Information. Equal to NULL if FI=FALSE
or when FI
is not provided at all.
accuracy
- vector of accuracy measures for the holdout sample. In
case of non-intermittent data includes: MPE, MAPE, SMAPE, MASE, sMAE,
RelMAE, sMSE and Bias coefficient (based on complex numbers). In case of
intermittent data the set of errors will be: sMSE, sPIS, sCE (scaled
cumulative error) and Bias coefficient. This is available only when
holdout=TRUE
.
B
- the vector of all the estimated parameters.
Ivan Svetunkov, ivan@svetunkov.ru
Svetunkov, I., Kourentzes, N. (February 2015). Complex exponential smoothing. Working Paper of Department of Management Science, Lancaster University 2015:1, 1-31.
Svetunkov I., Kourentzes N. (2017) Complex Exponential Smoothing for Time Series Forecasting. Not yet published.
es, ts, auto.ces
y <- rnorm(100,10,3)
ces(y,h=20,holdout=TRUE)
ces(y,h=20,holdout=FALSE)
y <- 500 - c(1:100)*0.5 + rnorm(100,10,3)
ces(y,h=20,holdout=TRUE,interval="p",bounds="a")
ces(BJsales,h=8,holdout=TRUE,seasonality="s",interval="sp",level=0.8)
ces(AirPassengers,h=18,holdout=TRUE,seasonality="s",interval="sp")
ces(AirPassengers,h=18,holdout=TRUE,seasonality="p",interval="np")
ces(AirPassengers,h=18,holdout=TRUE,seasonality="f",interval="p")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.