stressTraffic: Predicting Soil Stress Due to Agricultural Trafficability

stressTrafficR Documentation

Predicting Soil Stress Due to Agricultural Trafficability

Description

Contact area, stress distribuition and stress propagation based on the SoilFlex model (Keller 2005; Keller et al. 2007) are calculated.

Usage

stressTraffic(inflation.pressure, recommended.pressure, tyre.diameter, 
    tyre.width, wheel.load, conc.factor, layers, plot.contact.area = FALSE, ...) 

Arguments

inflation.pressure

tyre inflation pressure, kPa

recommended.pressure

recommended tyre inflation pressure at given load, kPa

tyre.diameter

overall diameter of the unloaded tyre, m

tyre.width

tyre width, m

wheel.load

wheel load, kg

conc.factor

concentration factor; a numeric vector ranging from 3 (wet soil) to 6 (dry soil), depending on water content.

layers

a numeric vector containing values of depth (in meters) for the soil layers. Note that layers can also be a unique value

plot.contact.area

logical; shall soilTraffic plot the distribution of stress over the contact area?

...

further graphical arguments. See par.

Value

A list of

Area

Contact area parameters.

Loads

Estimated wheel loads.

Stress

Stress propagation into soil; sigma_vertical: vertical stress; sigma_mean: mean normal stress

stress.matrix

The matrix of applied stress at a specific depth and radial distance from the tyre centre.

fZStress

The function of stress propagation in z direction (vertical stress).

fmeanStress

The function of mean normal stress propagation.

fStress

The function of stress propagation.

fXStress

The function of stress propagation in x (footprint length or driving) direction.

fYStress

The function of stress propagation in y (tire width) direction.

Author(s)

Renato Paiva de Lima <renato_agro_@hotmail.com>

Anderson Rodrigo da Silva <anderson.agro@hotmail.com>

Alvaro Pires da Silva <apisilva@usp.br>

References

Keller, T. 2005. A model to predict the contact area and the distribution of vertical stress below agricultural tyres from readily-available tyre parameters. Biosyst. Eng. 92, 85-96.

Keller, T.; Defossez, P.; Weisskopf, P.; Arvidsson, J.; Richard, G. 2007. SoilFlex: a model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil and Tillage Research 93, 391-411.

Examples

stress <- stressTraffic(inflation.pressure=200, 
	   recommended.pressure=200, 
	   tyre.diameter=1.8, 
	   tyre.width=0.4, 
	   wheel.load=4000, 
	   conc.factor=c(4,5,5,5,5,5),
           layers=c(0.05,0.1,0.3,0.5,0.7,1), 
	   plot.contact.area = TRUE)

stress

# Building a fancier plot for the contact area
# library(fields)
# image.plot(x = as.numeric(rownames(stress$stress.matrix)), 
#	       y = as.numeric(colnames(stress$stress.matrix)), 
#	       z = stress$stress.matrix,  
#	       xlab="Tyre footprint length (m)", ylab="Tyre width (m)") 
# End (not run)

# Stress Propagation 
# Vertical Stress
stress.v <- stress$Stress$sigma_vertical
layers <- stress$Stress$Layers
plot(x = 1, y = 1, xlim=c(0,300),ylim=c(1,0),xaxt = "n",
     ylab = "Soil Depth",xlab ="", type="l", main="")
axis(3)
mtext("Stress (kPa)",side=3,line=2.5)
lines(x=stress.v, y=layers)

# Mean normal stress
stress.p <- stress$Stress$sigma_mean
lines(x=stress.p, y=layers, lty=2)
legend("bottomright", c("Vertical stress", "Normal mean stress"), lty = 1:2)

# End (not run)

soilphysics documentation built on June 7, 2022, 5:06 p.m.