View source: R/useful_commands.R
spT.validation2 | R Documentation |
The following function is used to validate the predicted observations with the actual values based on some threshold.
spT.validation2(z,zhat,cutoff,names=FALSE)
z |
The original values (matrix or vector). |
zhat |
The predicted values (matrix or vector). |
cutoff |
The threshold value or cut-off point. |
names |
Logical, if TRUE then print the names of the validation statistics. |
TPR |
True Positive Rate, Sensitivity, Hit rate, Recall |
FPR |
False Positive Rate, False alarm |
FNR |
False Negative Rate, Miss rate |
TNR |
True Negative Rate, Specificity |
Prevalence |
Prevalence |
Accuracy |
Accuracy |
Precision |
Precision, Positive Predictive Value |
FOR |
False Ommission Rate |
LRp |
Positive Likelihood Ratio |
LRn |
Negative Likelihood Ratio |
FDR |
False Discovery Rate |
NPV |
Negative Predictive Value |
DOR |
Diagnostic Odds Ratio |
F1score |
F1 score |
Heidke.Skill |
Heidke Skill |
spT.pCOVER,spT.validation
.
##
# Create `x', which is the true values.
# Create `y', which is the predicted values.
x <- rnorm(100,0,0.1)
y <- rnorm(100,0,1)
spT.validation2(x, y, cutoff=0,names=TRUE)
##
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.