| center_data | Centers the observations in a matrix by their respective... | 
| cov_autocorrelation | Generates a p \times p autocorrelated covariance matrix | 
| cov_block_autocorrelation | Generates a p \times p block-diagonal covariance matrix with... | 
| cov_eigen | Computes the eigenvalue decomposition of the maximum... | 
| cov_intraclass | Generates a p \times p intraclass covariance matrix | 
| cov_list | Computes the covariance-matrix maximum likelihood estimators... | 
| cov_mle | Computes the maximum likelihood estimator for the sample... | 
| cov_pool | Computes the pooled maximum likelihood estimator (MLE) for... | 
| cov_shrink_diag | Computes a shrunken version of the maximum likelihood... | 
| cv_partition | Randomly partitions data for cross-validation. | 
| diag_estimates | Computes estimates and ancillary information for diagonal... | 
| dmvnorm_diag | Computes multivariate normal density with a diagonal... | 
| generate_blockdiag | Generates data from 'K' multivariate normal data populations,... | 
| generate_intraclass | Generates data from 'K' multivariate normal data populations,... | 
| h | Bias correction function from Pang et al. (2009). | 
| lda_diag | Diagonal Linear Discriminant Analysis (DLDA) | 
| lda_eigen | The Minimum Distance Rule using Moore-Penrose Inverse (MDMP)... | 
| lda_emp_bayes | The Minimum Distance Empirical Bayesian Estimator (MDEB)... | 
| lda_emp_bayes_eigen | The Minimum Distance Rule using Modified Empirical Bayes... | 
| lda_pseudo | Linear Discriminant Analysis (LDA) with the Moore-Penrose... | 
| lda_schafer | Linear Discriminant Analysis using the Schafer-Strimmer... | 
| lda_shrink_cov | Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) | 
| lda_shrink_mean | Shrinkage-mean-based Diagonal Linear Discriminant Analysis... | 
| lda_thomaz | Linear Discriminant Analysis using the Thomaz-Kitani-Gillies... | 
| log_determinant | Computes the log determinant of a matrix. | 
| no_intercept | Removes the intercept term from a formula if it is included | 
| plot.rda_high_dim_cv | Plots a heatmap of cross-validation error grid for a HDRDA... | 
| posterior_probs | Computes posterior probabilities via Bayes Theorem under... | 
| print.lda_diag | Outputs the summary for a DLDA classifier object. | 
| print.lda_eigen | Outputs the summary for a MDMP classifier object. | 
| print.lda_emp_bayes | Outputs the summary for a MDEB classifier object. | 
| print.lda_emp_bayes_eigen | Outputs the summary for a MDMEB classifier object. | 
| print.lda_pseudo | Outputs the summary for a lda_pseudo classifier object. | 
| print.lda_schafer | Outputs the summary for a lda_schafer classifier object. | 
| print.lda_shrink_cov | Outputs the summary for a SDLDA classifier object. | 
| print.lda_shrink_mean | Outputs the summary for a SmDLDA classifier object. | 
| print.lda_thomaz | Outputs the summary for a lda_thomaz classifier object. | 
| print.qda_diag | Outputs the summary for a DQDA classifier object. | 
| print.qda_shrink_cov | Outputs the summary for a SDQDA classifier object. | 
| print.qda_shrink_mean | Outputs the summary for a SmDQDA classifier object. | 
| print.rda_high_dim | Outputs the summary for a HDRDA classifier object. | 
| qda_diag | Diagonal Quadratic Discriminant Analysis (DQDA) | 
| qda_shrink_cov | Shrinkage-based Diagonal Quadratic Discriminant Analysis... | 
| qda_shrink_mean | Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis... | 
| quadform | Quadratic form of a matrix and a vector | 
| quadform_inv | Quadratic Form of the inverse of a matrix and a vector | 
| rda_cov | Calculates the RDA covariance-matrix estimators for each... | 
| rda_high_dim | High-Dimensional Regularized Discriminant Analysis (HDRDA) | 
| rda_high_dim_cv | Helper function to optimize the HDRDA classifier via... | 
| rda_weights | Computes the observation weights for each class for the HDRDA... | 
| regdiscrim_estimates | Computes estimates and ancillary information for regularized... | 
| risk_stein | Stein Risk function from Pang et al. (2009). | 
| solve_chol | Computes the inverse of a symmetric, positive-definite matrix... | 
| tong_mean_shrinkage | Tong et al. (2012)'s Lindley-type Shrunken Mean Estimator | 
| two_class_sim_data | Example bivariate classification data from caret | 
| update_rda_high_dim | Helper function to update tuning parameters for the HDRDA... | 
| var_shrinkage | Shrinkage-based estimator of variances for each feature from... | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.