center_data | Centers the observations in a matrix by their respective... |
cov_autocorrelation | Generates a p \times p autocorrelated covariance matrix |
cov_block_autocorrelation | Generates a p \times p block-diagonal covariance matrix with... |
cov_eigen | Computes the eigenvalue decomposition of the maximum... |
cov_intraclass | Generates a p \times p intraclass covariance matrix |
cov_list | Computes the covariance-matrix maximum likelihood estimators... |
cov_mle | Computes the maximum likelihood estimator for the sample... |
cov_pool | Computes the pooled maximum likelihood estimator (MLE) for... |
cov_shrink_diag | Computes a shrunken version of the maximum likelihood... |
cv_partition | Randomly partitions data for cross-validation. |
diag_estimates | Computes estimates and ancillary information for diagonal... |
dmvnorm_diag | Computes multivariate normal density with a diagonal... |
generate_blockdiag | Generates data from 'K' multivariate normal data populations,... |
generate_intraclass | Generates data from 'K' multivariate normal data populations,... |
h | Bias correction function from Pang et al. (2009). |
lda_diag | Diagonal Linear Discriminant Analysis (DLDA) |
lda_eigen | The Minimum Distance Rule using Moore-Penrose Inverse (MDMP)... |
lda_emp_bayes | The Minimum Distance Empirical Bayesian Estimator (MDEB)... |
lda_emp_bayes_eigen | The Minimum Distance Rule using Modified Empirical Bayes... |
lda_pseudo | Linear Discriminant Analysis (LDA) with the Moore-Penrose... |
lda_schafer | Linear Discriminant Analysis using the Schafer-Strimmer... |
lda_shrink_cov | Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA) |
lda_shrink_mean | Shrinkage-mean-based Diagonal Linear Discriminant Analysis... |
lda_thomaz | Linear Discriminant Analysis using the Thomaz-Kitani-Gillies... |
log_determinant | Computes the log determinant of a matrix. |
no_intercept | Removes the intercept term from a formula if it is included |
plot.rda_high_dim_cv | Plots a heatmap of cross-validation error grid for a HDRDA... |
posterior_probs | Computes posterior probabilities via Bayes Theorem under... |
print.lda_diag | Outputs the summary for a DLDA classifier object. |
print.lda_eigen | Outputs the summary for a MDMP classifier object. |
print.lda_emp_bayes | Outputs the summary for a MDEB classifier object. |
print.lda_emp_bayes_eigen | Outputs the summary for a MDMEB classifier object. |
print.lda_pseudo | Outputs the summary for a lda_pseudo classifier object. |
print.lda_schafer | Outputs the summary for a lda_schafer classifier object. |
print.lda_shrink_cov | Outputs the summary for a SDLDA classifier object. |
print.lda_shrink_mean | Outputs the summary for a SmDLDA classifier object. |
print.lda_thomaz | Outputs the summary for a lda_thomaz classifier object. |
print.qda_diag | Outputs the summary for a DQDA classifier object. |
print.qda_shrink_cov | Outputs the summary for a SDQDA classifier object. |
print.qda_shrink_mean | Outputs the summary for a SmDQDA classifier object. |
print.rda_high_dim | Outputs the summary for a HDRDA classifier object. |
qda_diag | Diagonal Quadratic Discriminant Analysis (DQDA) |
qda_shrink_cov | Shrinkage-based Diagonal Quadratic Discriminant Analysis... |
qda_shrink_mean | Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis... |
quadform | Quadratic form of a matrix and a vector |
quadform_inv | Quadratic Form of the inverse of a matrix and a vector |
rda_cov | Calculates the RDA covariance-matrix estimators for each... |
rda_high_dim | High-Dimensional Regularized Discriminant Analysis (HDRDA) |
rda_high_dim_cv | Helper function to optimize the HDRDA classifier via... |
rda_weights | Computes the observation weights for each class for the HDRDA... |
regdiscrim_estimates | Computes estimates and ancillary information for regularized... |
risk_stein | Stein Risk function from Pang et al. (2009). |
solve_chol | Computes the inverse of a symmetric, positive-definite matrix... |
tong_mean_shrinkage | Tong et al. (2012)'s Lindley-type Shrunken Mean Estimator |
two_class_sim_data | Example bivariate classification data from caret |
update_rda_high_dim | Helper function to update tuning parameters for the HDRDA... |
var_shrinkage | Shrinkage-based estimator of variances for each feature from... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.