View source: R/smooth.time.series.R
smooth.time.series | R Documentation |
Smooths pixel-level data in raster time-series and can impute missing (NA) values.
smooth.time.series(x, f = 0.8, smooth.data = FALSE, ...)
x |
A terra SpatRaster with > 8 layers |
f |
Smoothing parameter (see loess span argument) |
smooth.data |
(FALSE/TRUE) Smooth all of the data or just impute NA values |
... |
Additional arguments passed to terra::app (for writing results to disk) |
This function uses a LOESS regression to smooth the time-series. If the data is smoothed, (using the smooth.data = TRUE argument) it will be entirely replaced by a loess estimate of the time-series (estimated distribution at the pixel-level). Alternately, with smooth.data = FALSE, the function can be used to impute missing pixel data (NA) in raster time-series (stacks/bricks). The results can dramatically be effected by the choice of the smoothing parameter (f) so caution is warranted and the effect of this parameter tested.
A terra SpatRaster containing imputed or smoothed data.
Jeffrey S. Evans <jeffrey_evans@tnc.org>
loess
for details on the loess regression
app
for details on additional (...) arguments
impute.loess
for details on imputation model
library(terra)
random.raster <- function(rows=50, cols=50, l=20, min=0, max=1){
do.call(c, replicate(l, rast(matrix(runif(rows * cols, min, max),
rows , cols))))
}
r <- random.raster()
#### Smooth time-series using raster stack/brick
r.smooth <- smooth.time.series(r, f = 0.4, smooth.data = TRUE)
# extract pixel 100 for plotting
y <- as.numeric(r[100])
ys <- as.numeric(r.smooth[100])
# plot results
plot(y, type="l")
lines(ys, col="red")
legend("bottomright", legend=c("original","smoothed"),
lty=c(1,1), col=c("black","red"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.